Deep Learning-Guided Fiberoptic Raman Spectroscopy Enables Real-Time In Vivo Diagnosis and Assessment of Nasopharyngeal Carcinoma and Post-treatment Efficacy during Endoscopy

拉曼光谱 鼻咽癌 化学 体内 卷积神经网络 人工智能 诊断模型 医学 金标准(测试) 模式识别(心理学) 计算机科学 放射科 光学 放射治疗 数据挖掘 物理 生物技术 生物
作者
Chi Shu,Hanshu Yan,Wei Zheng,Kan Lin,Anne James,Sathiyamoorthy Selvarajan,Chwee Ming Lim,Zhiwei Huang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (31): 10898-10906 被引量:34
标识
DOI:10.1021/acs.analchem.1c01559
摘要

In this work, we develop a deep learning-guided fiberoptic Raman diagnostic platform to assess its ability of real-time in vivo nasopharyngeal carcinoma (NPC) diagnosis and post-treatment follow-up of NPC patients. The robust Raman diagnostic platform is established using innovative multi-layer Raman-specified convolutional neural networks (RS-CNN) together with simultaneous fingerprint and high-wavenumber spectra acquired within sub-seconds using a fiberoptic Raman endoscopy system. We have acquired a total of 15,354 FP/HW in vivo Raman spectra (control: 1761; NPC: 4147; and post-treatment (PT): 9446) from 888 tissue sites of 418 subjects (healthy control: 85; NPC: 82; and PT: 251) during endoscopic examination. The optimized RS-CNN model provides an overall diagnostic accuracy of 82.09% (sensitivity of 92.18% and specificity of 73.99%) for identifying NPC from control and post-treatment patients, which is superior to the best diagnosis performance (accuracy of 73.57%; sensitivity of 89.74%; and specificity of 58.10%) using partial-least-squares linear-discriminate-analysis, proving the robustness and high spectral information sensitiveness of the RS-CNN model developed. We further investigate the saliency map of the best RS-CNN models using the correctly predicted Raman spectra. The specific Raman signatures that are related to the cancer-associated biomolecular variations (e.g., collagens, lipids, and nucleic acids) are uncovered in the map, validating the diagnostic capability of RS-CNN models to correlate with biomolecular signatures. Deep learning-based Raman spectroscopy is a powerful diagnostic tool for rapid screening and surveillance of NPC patients and can also be deployed for longitudinal follow-up monitoring of post-treatment NPC patients to detect early cancer recurrences in the head and neck.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
onlywei发布了新的文献求助10
1秒前
4秒前
XUBALA发布了新的文献求助10
5秒前
6秒前
caoruyuan发布了新的文献求助10
6秒前
7秒前
无极微光应助shtnice采纳,获得20
7秒前
大个应助1sss采纳,获得10
8秒前
buno应助温暖访枫采纳,获得10
8秒前
蓝天应助温暖访枫采纳,获得10
8秒前
科研通AI6应助温暖访枫采纳,获得10
8秒前
林夕完成签到,获得积分10
9秒前
10秒前
丰富飞阳发布了新的文献求助10
10秒前
sapphire_yy完成签到,获得积分10
12秒前
Keira完成签到,获得积分10
12秒前
西贝发布了新的文献求助10
12秒前
思源应助蓝莓采纳,获得10
13秒前
13秒前
13秒前
ppll3906发布了新的文献求助10
14秒前
17秒前
emmai发布了新的文献求助10
17秒前
17秒前
17秒前
yrw完成签到,获得积分10
18秒前
321完成签到,获得积分10
18秒前
小叮当完成签到,获得积分10
19秒前
KKKK完成签到,获得积分20
19秒前
七友应助tinner采纳,获得10
19秒前
19秒前
Joker发布了新的文献求助10
19秒前
李文君发布了新的文献求助10
21秒前
mumahuangshu完成签到,获得积分20
21秒前
充电小子完成签到 ,获得积分10
21秒前
叫我益达完成签到,获得积分10
21秒前
21秒前
21秒前
KKKK发布了新的文献求助10
22秒前
22秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314