DRNApred, fast sequence-based method that accurately predicts and discriminates DNA- and RNA-binding residues

生物 核糖核酸 DNA RNA结合蛋白 计算生物学 结合位点 核酸 HMG盒 DNA结合位点 DNA结合蛋白 遗传学 转录因子 基因表达 基因 发起人
作者
Jing Yan,Lukasz Kurgan
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:45 (10): gkx059-gkx059 被引量:230
标识
DOI:10.1093/nar/gkx059
摘要

Protein-DNA and protein-RNA interactions are part of many diverse and essential cellular functions and yet most of them remain to be discovered and characterized. Recent research shows that sequence-based predictors of DNA-binding residues accurately find these residues but also cross-predict many RNA-binding residues as DNA-binding, and vice versa. Most of these methods are also relatively slow, prohibiting applications on the whole-genome scale. We describe a novel sequence-based method, DRNApred, which accurately and in high-throughput predicts and discriminates between DNA- and RNA-binding residues. DRNApred was designed using a new dataset with both DNA- and RNA-binding proteins, regression that penalizes cross-predictions, and a novel two-layered architecture. DRNApred outperforms state-of-the-art predictors of DNA- or RNA-binding residues on a benchmark test dataset by substantially reducing the cross predictions and predicting arguably higher quality false positives that are located nearby the native binding residues. Moreover, it also more accurately predicts the DNA- and RNA-binding proteins. Application on the human proteome confirms that DRNApred reduces the cross predictions among the native nucleic acid binders. Also, novel putative DNA/RNA-binding proteins that it predicts share similar subcellular locations and residue charge profiles with the known native binding proteins. Webserver of DRNApred is freely available at http://biomine.cs.vcu.edu/servers/DRNApred/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王泽然发布了新的文献求助10
刚刚
1秒前
慕青应助跑在颖采纳,获得10
2秒前
科研通AI2S应助344061512采纳,获得10
3秒前
zshdoct发布了新的文献求助10
3秒前
西红柿完成签到,获得积分10
3秒前
研友_VZG7GZ应助自觉的糖豆采纳,获得10
3秒前
feiyan发布了新的文献求助10
3秒前
老实翠绿完成签到,获得积分20
5秒前
冷傲翠绿完成签到,获得积分20
5秒前
科研通AI2S应助含糊的电源采纳,获得10
6秒前
春樹暮雲完成签到 ,获得积分10
6秒前
CipherSage应助桑尼号采纳,获得10
7秒前
7秒前
水的叶子66完成签到,获得积分10
8秒前
冷傲翠绿发布了新的文献求助10
8秒前
Mic应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
9秒前
脑洞疼应助学术虫采纳,获得10
9秒前
CAOHOU应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
10秒前
Wangyingjie5完成签到,获得积分10
10秒前
CAOHOU应助科研通管家采纳,获得10
10秒前
10秒前
xzy998应助科研通管家采纳,获得10
10秒前
Mic应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
CAOHOU应助科研通管家采纳,获得10
10秒前
10秒前
CAOHOU应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
李健应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760740
求助须知:如何正确求助?哪些是违规求助? 5525833
关于积分的说明 15398210
捐赠科研通 4897473
什么是DOI,文献DOI怎么找? 2634182
邀请新用户注册赠送积分活动 1582315
关于科研通互助平台的介绍 1537672