材料科学
复合材料
环氧树脂
复合数
电磁屏蔽
碳纳米管
导电体
电导率
热导率
纳米复合材料
物理化学
化学
作者
Yu Xu,Ying Li,Hua Wei,Aimin Zhang,Jianjun Bao
标识
DOI:10.1021/acsami.6b08325
摘要
Herein, light-weight and exceptionally conductive epoxy composite foams were innovatively fabricated for electromagnetic interference (EMI) shielding applications using multiwalled carbon nanotubes (MWCNTs) and 3D silver-coated melamine foam (SF) as conductive frameworks. A novel and nontraditional polymer microsphere was used to reduce the material density. The preformed, highly porous, and electrically conductive SF provided channels for fast electron transport. The MWCNTs were used to offset the decrease in conductive pathways due to the crystal defects of the silver layer and the insulating epoxy resin. Consequently, an exceptional conductivity of 253.4 S m(-1), a remarkable EMI shielding effectiveness of above 68 dB at 0.05-18 GHz, and a thermal conductivity of 0.305 W mK(-1) were achieved in these novel foams employing only 2 wt % of MWCNTs and 3.7 wt % of silver due to the synergistic effects that originated in the MWCNT and SF. These parameters are substantially higher than that achieved for the foam containing 2 wt % MWCNTs. Also, the SF exhibited little weakening in the foamability of the epoxy blends and the compression properties of resulting foams. All the results indicated that this effort provided a novel, simple, low-cost, and easily industrialized concept for fabricating light-weight, high-strength epoxy composite foams for high-performance EMI shielding applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI