维数(图论)
背景(考古学)
快速傅里叶变换
噪音(视频)
算法
图像处理
计算机科学
理论(学习稳定性)
缩小
图像(数学)
傅里叶变换
压缩传感
离散傅里叶变换(通用)
模式识别(心理学)
人工智能
数学
傅里叶分析
组合数学
数学分析
机器学习
分数阶傅立叶变换
生物
古生物学
程序设计语言
作者
Pierre-David Létourneau,M. Harper Langston,Richard Lethin
标识
DOI:10.1109/hpec.2016.7761579
摘要
We present the sparse multidimensional FFT (sMFFT) for positive real vectors with application to image processing. Our algorithm works in any fixed dimension, requires an (almost)-optimal number of samples (O (Rlog (N/R))) and runs in O (Rlog (N/R)) complexity (to first order) for N unknowns and R nonzeros. It is stable to noise and exhibits an exponentially small probability of failure. Numerical results show sMFFT's large quantitative and qualitative strengths as compared to ℓ 1 -minimization for Compressive Sensing as well as advantages in the context of image processing and change detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI