Predicting malignant nodules by fusing deep features with classical radiomics features

医学 卷积神经网络 人工智能 深度学习 无线电技术 全国肺筛查试验 学习迁移 肺癌 肺癌筛查 放射科 接收机工作特性 模式识别(心理学) 特征(语言学) 计算机断层摄影术 计算机科学 病理 内科学 哲学 语言学
作者
Rahul Paul,Samuel Hawkins,Matthew B. Schabath,Robert J. Gillies,Lawrence Hall,Dmitry B. Goldgof
出处
期刊:Journal of medical imaging [SPIE]
卷期号:5 (01): 1-1 被引量:87
标识
DOI:10.1117/1.jmi.5.1.011021
摘要

Lung cancer has a high incidence and mortality rate. Early detection and diagnosis of lung cancers is best achieved with low-dose computed tomography (CT). Classical radiomics features extracted from lung CT images have been shown as able to predict cancer incidence and prognosis. With the advancement of deep learning and convolutional neural networks (CNNs), deep features can be identified to analyze lung CTs for prognosis prediction and diagnosis. Due to a limited number of available images in the medical field, the transfer learning concept can be helpful. Using subsets of participants from the National Lung Screening Trial (NLST), we utilized a transfer learning approach to differentiate lung cancer nodules versus positive controls. We experimented with three different pretrained CNNs for extracting deep features and used five different classifiers. Experiments were also conducted with deep features from different color channels of a pretrained CNN. Selected deep features were combined with radiomics features. A CNN was designed and trained. Combinations of features from pretrained, CNNs trained on NLST data, and classical radiomics were used to build classifiers. The best accuracy (76.79%) was obtained using feature combinations. An area under the receiver operating characteristic curve of 0.87 was obtained using a CNN trained on an augmented NLST data cohort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hey发布了新的文献求助20
刚刚
1秒前
3秒前
tqmx发布了新的文献求助10
7秒前
好好养猪发布了新的文献求助10
7秒前
8秒前
情怀应助稽TR采纳,获得10
9秒前
在水一方应助万尧采纳,获得10
9秒前
了0完成签到 ,获得积分10
9秒前
capon发布了新的文献求助10
10秒前
英俊的铭应助DreamerKing采纳,获得10
10秒前
可爱的函函应助ybwei2008_163采纳,获得10
11秒前
hey完成签到,获得积分10
11秒前
轩辕忆枫完成签到,获得积分10
13秒前
15秒前
汉堡包应助豆包采纳,获得10
16秒前
momo完成签到,获得积分10
17秒前
18秒前
18秒前
传奇3应助manguang采纳,获得10
19秒前
sunflower完成签到,获得积分10
20秒前
lyh的老公发布了新的文献求助10
21秒前
mm发布了新的文献求助20
21秒前
干净仰完成签到,获得积分10
22秒前
MSG完成签到,获得积分10
22秒前
了0完成签到 ,获得积分10
23秒前
1233330完成签到,获得积分10
23秒前
DreamerKing发布了新的文献求助10
24秒前
25秒前
孙燕应助wangrswjx采纳,获得10
25秒前
NexusExplorer应助茹茹采纳,获得10
29秒前
Chen完成签到 ,获得积分10
32秒前
小瞎子_Zora完成签到 ,获得积分10
33秒前
科研顺利完成签到,获得积分10
35秒前
6666666666完成签到 ,获得积分10
37秒前
无语的安白应助现代怀蝶采纳,获得10
37秒前
37秒前
zx完成签到,获得积分10
39秒前
40秒前
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846014
求助须知:如何正确求助?哪些是违规求助? 3388362
关于积分的说明 10552922
捐赠科研通 3108936
什么是DOI,文献DOI怎么找? 1713223
邀请新用户注册赠送积分活动 824620
科研通“疑难数据库(出版商)”最低求助积分说明 774982