亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Personal comfort models: Predicting individuals' thermal preference using occupant heating and cooling behavior and machine learning

热舒适性 偏爱 模拟 领域(数学) 计算机科学 人口 工程类 统计 数学 地理 气象学 社会学 人口学 纯数学
作者
Joyce Kim,Yuxun Zhou,Stefano Schiavon,Paul Raftery,Gail Brager
出处
期刊:Building and Environment [Elsevier]
卷期号:129: 96-106 被引量:420
标识
DOI:10.1016/j.buildenv.2017.12.011
摘要

A personal comfort model is a new approach to thermal comfort modeling that predicts individuals' thermal comfort responses, instead of the average response of a large population. However, securing consistent occupant feedback for model development is challenging as the current methods of data collection rely on individuals' survey participation. We explored the use of a new type of feedback, occupants' heating and cooling behavior with a personal comfort system (PCS) for the development of personal comfort models to predict individuals' thermal preference. The model development draws from field data including PCS control behavior, environmental conditions and mechanical system settings collected from 38 occupants in an office building, and employs six machine learning algorithms. The results showed that (1) personal comfort models based on all field data produced the median accuracy of 0.73 among all subjects and improved predictive accuracy compared to conventional models (PMV, adaptive) which produced a median accuracy of 0.51; (2) the PMV and adaptive models produced individual comfort predictions only slightly better than random guessing under the relatively mild indoor environment observed in the field study; and (3) the models based on PCS control behavior produced the best prediction accuracy when individually assessing all categories of field data acquired in the study. We conclude that personal comfort models based on occupants' heating and cooling behavior can effectively predict individuals' thermal preference and can therefore be used in everyday comfort management to improve occupant satisfaction and energy use in buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Kashing采纳,获得10
刚刚
23秒前
xwy完成签到,获得积分10
35秒前
54秒前
1分钟前
1分钟前
Kashing发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Mine完成签到,获得积分10
1分钟前
香蕉觅云应助乐观之瑶采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
乐观之瑶发布了新的文献求助10
2分钟前
了了完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
Asofi完成签到,获得积分10
3分钟前
外星人完成签到,获得积分10
3分钟前
3分钟前
风一样的我完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
3分钟前
景初柔发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Xiaocongwu发布了新的文献求助10
4分钟前
过时的笙发布了新的文献求助10
4分钟前
鲤鱼山人完成签到 ,获得积分10
4分钟前
挣钱抱男模完成签到,获得积分10
4分钟前
4分钟前
李剑鸿完成签到,获得积分20
4分钟前
5分钟前
完美世界应助神秘猎牛人采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538822
求助须知:如何正确求助?哪些是违规求助? 4625825
关于积分的说明 14596950
捐赠科研通 4566530
什么是DOI,文献DOI怎么找? 2503357
邀请新用户注册赠送积分活动 1481421
关于科研通互助平台的介绍 1452856