Quantitative Phenotypic Image Analysis of Three-Dimensional Organotypic Cultures

多细胞生物 细胞外基质 细胞生物学 生物 间质细胞 表型 细胞 类有机物 运动性 癌细胞 层粘连蛋白 细胞培养 癌症 癌症研究 遗传学 基因
作者
Malin Åkerfelt,Mervi Toriseva,Matthias Nees
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 433-445 被引量:2
标识
DOI:10.1007/978-1-4939-7021-6_31
摘要

Glandular epithelial cells differentiate into three-dimensional (3D) multicellular or acinar structures, particularly when embedded in laminin-rich extracellular matrix (ECM). The spectrum of different multicellular morphologies formed in 3D is a reliable indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. Motile cancer cells may actively invade the matrix, utilizing epithelial, mesenchymal, or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are also very sensitive to small-molecule inhibitors that, e.g., target the actin cytoskeleton. Our strategy is to recapitulate the formation and the histology of complex solid cancer tissues in vitro, based on cell culture technologies that promote the intrinsic differentiation potential of normal and transformed epithelial cells, and also including stromal fibroblasts and other key components of the tumor microenvironment. We have developed a streamlined stand-alone software solution that supports the detailed quantitative phenotypic analysis of organotypic 3D cultures. This approach utilizes the power of automated image analysis as a phenotypic readout in cell-based assays. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of a large number of multicellular structures, which can form a multitude of different organoid shapes, sizes, and textures according to their capacity to engage in epithelial differentiation programs or not. At the far end of this spectrum of tumor-relevant differentiation properties, there are highly invasive tumor cells or multicellular structures that may rapidly invade the surrounding ECM, but fail to form higher-order epithelial tissue structures. Furthermore, this system allows us to monitor dynamic changes that can result from the extraordinary plasticity of tumor cells, e.g., epithelial-to-mesenchymal transition in live cell settings. Furthermore, AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. Our approach supports the growing needs for user-friendly, straightforward solutions that facilitate cell-based organotypic 3D assays in basic research, drug discovery, and target validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张包发布了新的文献求助10
刚刚
orixero应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
科研通AI5应助长情的书雁采纳,获得30
3秒前
kai发布了新的文献求助10
3秒前
deletelzr发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
8秒前
大气亦巧发布了新的文献求助10
8秒前
serendipity完成签到 ,获得积分10
10秒前
小确幸发布了新的文献求助10
11秒前
轻松碧曼完成签到,获得积分10
12秒前
Fay发布了新的文献求助10
12秒前
MY发布了新的文献求助10
15秒前
言午完成签到,获得积分10
17秒前
脑洞疼应助deletelzr采纳,获得10
19秒前
19秒前
谦让爆米花完成签到,获得积分10
19秒前
乐乐应助KKKK采纳,获得10
20秒前
畅快的寄松完成签到,获得积分10
20秒前
科研小白完成签到,获得积分10
22秒前
活泼雁芙发布了新的文献求助10
22秒前
23秒前
24秒前
共享精神应助zzz采纳,获得10
25秒前
诺奇完成签到,获得积分10
25秒前
MrIShelter完成签到,获得积分10
25秒前
852应助人不犯二枉少年采纳,获得10
28秒前
记得补充水分我的朋友完成签到 ,获得积分10
31秒前
华仔应助17采纳,获得10
32秒前
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807102
求助须知:如何正确求助?哪些是违规求助? 3351867
关于积分的说明 10356328
捐赠科研通 3067877
什么是DOI,文献DOI怎么找? 1684778
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765767