Framework to construct and interpret latent class trajectory modelling

潜在类模型 医学 统计 随机效应模型 一致性 混合模型 计量经济学 数学 荟萃分析 内科学
作者
Hannah Lennon,Scott P. Kelly,Matthew Sperrin,Iain Buchan,Amanda J. Cross,Michael F. Leitzmann,Michael B. Cook,Andrew G. Renehan
出处
期刊:BMJ Open [BMJ]
卷期号:8 (7): e020683-e020683 被引量:239
标识
DOI:10.1136/bmjopen-2017-020683
摘要

Objectives Latent class trajectory modelling (LCTM) is a relatively new methodology in epidemiology to describe life-course exposures, which simplifies heterogeneous populations into homogeneous patterns or classes. However, for a given dataset, it is possible to derive scores of different models based on number of classes, model structure and trajectory property. Here, we rationalise a systematic framework to derive a ‘core’ favoured model. Methods We developed an eight-step framework: step 1: a scoping model; step 2: refining the number of classes; step 3: refining model structure (from fixed-effects through to a flexible random-effect specification); step 4: model adequacy assessment; step 5: graphical presentations; step 6: use of additional discrimination tools (‘degree of separation’; Elsensohn’s envelope of residual plots); step 7: clinical characterisation and plausibility; and step 8: sensitivity analysis. We illustrated these steps using data from the NIH-AARP cohort of repeated determinations of body mass index (BMI) at baseline (mean age: 62.5 years), and BMI derived by weight recall at ages 18, 35 and 50 years. Results From 288 993 participants, we derived a five-class model for each gender (men: 177 455; women: 111 538). From seven model structures, the favoured model was a proportional random quadratic structure (model F). Favourable properties were also noted for the unrestricted random quadratic structure (model G). However, class proportions varied considerably by model structure—concordance between models F and G were moderate (Cohen κ: men, 0.57; women, 0.65) but poor with other models. Model adequacy assessments, evaluations using discrimination tools, clinical plausibility and sensitivity analyses supported our model selection. Conclusion We propose a framework to construct and select a ‘core’ LCTM, which will facilitate generalisability of results in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
胡萝卜icc完成签到,获得积分20
2秒前
2秒前
科研通AI5应助德坚采纳,获得10
6秒前
在水一方应助曲奇采纳,获得10
7秒前
GongSyi发布了新的文献求助10
7秒前
小元发布了新的文献求助10
7秒前
萤火虫发布了新的文献求助10
8秒前
虚心谷梦完成签到,获得积分10
9秒前
9秒前
HEAUBOOK应助时丶倾采纳,获得30
9秒前
相逢驳回了bc应助
15秒前
畅快枕头完成签到 ,获得积分10
15秒前
小胡发布了新的文献求助10
16秒前
jialin发布了新的文献求助10
17秒前
tsntn完成签到,获得积分10
19秒前
20秒前
111发布了新的文献求助10
25秒前
30秒前
领导范儿应助liang采纳,获得10
31秒前
里里要努力完成签到,获得积分10
35秒前
科研通AI5应助可爱的寻云采纳,获得10
36秒前
lily336699发布了新的文献求助10
36秒前
星辰大海应助尺八采纳,获得30
36秒前
科研通AI5应助扒开皮皮采纳,获得10
36秒前
37秒前
斯文败类应助负责的方盒采纳,获得10
38秒前
40秒前
小胡完成签到,获得积分20
40秒前
noss发布了新的文献求助10
44秒前
47秒前
liang发布了新的文献求助10
50秒前
懒懒洋洋洋完成签到 ,获得积分10
52秒前
科研通AI5应助安白采纳,获得10
52秒前
53秒前
56秒前
天天快乐应助liang采纳,获得10
59秒前
科研通AI5应助lily336699采纳,获得10
1分钟前
风趣尔蓝发布了新的文献求助30
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323655
关于积分的说明 10215320
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339