亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease

范畴变量 人工智能 特征选择 计算机科学 机器学习 回归 回归分析 支持向量机 模态(人机交互) 模式识别(心理学) 统计 数学
作者
Daoqiang Zhang,Dinggang Shen
出处
期刊:NeuroImage [Elsevier]
卷期号:59 (2): 895-907 被引量:636
标识
DOI:10.1016/j.neuroimage.2011.09.069
摘要

Many machine learning and pattern classification methods have been applied to the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Recently, rather than predicting categorical variables as in classification, several pattern regression methods have also been used to estimate continuous clinical variables from brain images. However, most existing regression methods focus on estimating multiple clinical variables separately and thus cannot utilize the intrinsic useful correlation information among different clinical variables. On the other hand, in those regression methods, only a single modality of data (usually only the structural MRI) is often used, without considering the complementary information that can be provided by different modalities. In this paper, we propose a general methodology, namely Multi-Modal Multi-Task (M3T) learning, to jointly predict multiple variables from multi-modal data. Here, the variables include not only the clinical variables used for regression but also the categorical variable used for classification, with different tasks corresponding to prediction of different variables. Specifically, our method contains two key components, i.e., (1) a multi-task feature selection which selects the common subset of relevant features for multiple variables from each modality, and (2) a multi-modal support vector machine which fuses the above-selected features from all modalities to predict multiple (regression and classification) variables. To validate our method, we perform two sets of experiments on ADNI baseline MRI, FDG-PET, and cerebrospinal fluid (CSF) data from 45 AD patients, 91 MCI patients, and 50 healthy controls (HC). In the first set of experiments, we estimate two clinical variables such as Mini Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale - Cognitive Subscale (ADAS-Cog), as well as one categorical variable (with value of ‘AD’, ‘MCI’ or ‘HC’), from the baseline MRI, FDG-PET, and CSF data. In the second set of experiments, we predict the 2-year changes of MMSE and ADAS-Cog scores and also the conversion of MCI to AD from the baseline MRI, FDG-PET, and CSF data. The results on both sets of experiments demonstrate that our proposed M3T learning scheme can achieve better performance on both regression and classification tasks than the conventional learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
souther完成签到,获得积分0
6秒前
17秒前
复杂元瑶发布了新的文献求助10
21秒前
25秒前
iris发布了新的文献求助10
29秒前
1分钟前
大气亦巧发布了新的文献求助10
1分钟前
iris发布了新的文献求助10
1分钟前
兼听则明完成签到,获得积分10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
大气亦巧完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
waomi发布了新的文献求助10
1分钟前
muhum完成签到 ,获得积分10
1分钟前
Ava应助waomi采纳,获得10
1分钟前
breeze完成签到,获得积分10
2分钟前
2分钟前
Takahara2000发布了新的文献求助10
2分钟前
Maestro_S应助iris采纳,获得10
2分钟前
科研通AI2S应助iris采纳,获得10
2分钟前
2分钟前
坚强煜城完成签到,获得积分10
2分钟前
2分钟前
坚强煜城发布了新的文献求助10
2分钟前
2分钟前
深情安青应助坚强煜城采纳,获得10
2分钟前
JamesPei应助llj采纳,获得10
2分钟前
飞快的孱完成签到,获得积分10
2分钟前
厚朴大师完成签到,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
共享精神应助陶醉的烤鸡采纳,获得10
3分钟前
3分钟前
烨枫晨曦完成签到,获得积分10
3分钟前
3分钟前
饭饭完成签到,获得积分10
3分钟前
浮游应助亦玉采纳,获得10
3分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443972
求助须知:如何正确求助?哪些是违规求助? 4553602
关于积分的说明 14242702
捐赠科研通 4475381
什么是DOI,文献DOI怎么找? 2452379
邀请新用户注册赠送积分活动 1443266
关于科研通互助平台的介绍 1419035