Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease

范畴变量 人工智能 特征选择 计算机科学 机器学习 回归 回归分析 支持向量机 模态(人机交互) 模式识别(心理学) 统计 数学
作者
Daoqiang Zhang,Dinggang Shen
出处
期刊:NeuroImage [Elsevier BV]
卷期号:59 (2): 895-907 被引量:636
标识
DOI:10.1016/j.neuroimage.2011.09.069
摘要

Many machine learning and pattern classification methods have been applied to the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Recently, rather than predicting categorical variables as in classification, several pattern regression methods have also been used to estimate continuous clinical variables from brain images. However, most existing regression methods focus on estimating multiple clinical variables separately and thus cannot utilize the intrinsic useful correlation information among different clinical variables. On the other hand, in those regression methods, only a single modality of data (usually only the structural MRI) is often used, without considering the complementary information that can be provided by different modalities. In this paper, we propose a general methodology, namely Multi-Modal Multi-Task (M3T) learning, to jointly predict multiple variables from multi-modal data. Here, the variables include not only the clinical variables used for regression but also the categorical variable used for classification, with different tasks corresponding to prediction of different variables. Specifically, our method contains two key components, i.e., (1) a multi-task feature selection which selects the common subset of relevant features for multiple variables from each modality, and (2) a multi-modal support vector machine which fuses the above-selected features from all modalities to predict multiple (regression and classification) variables. To validate our method, we perform two sets of experiments on ADNI baseline MRI, FDG-PET, and cerebrospinal fluid (CSF) data from 45 AD patients, 91 MCI patients, and 50 healthy controls (HC). In the first set of experiments, we estimate two clinical variables such as Mini Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale - Cognitive Subscale (ADAS-Cog), as well as one categorical variable (with value of ‘AD’, ‘MCI’ or ‘HC’), from the baseline MRI, FDG-PET, and CSF data. In the second set of experiments, we predict the 2-year changes of MMSE and ADAS-Cog scores and also the conversion of MCI to AD from the baseline MRI, FDG-PET, and CSF data. The results on both sets of experiments demonstrate that our proposed M3T learning scheme can achieve better performance on both regression and classification tasks than the conventional learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助小山猪采纳,获得10
刚刚
不吃香菜发布了新的文献求助10
2秒前
記yian发布了新的文献求助10
4秒前
5秒前
可爱的函函应助三角梅采纳,获得10
5秒前
小熊饼干完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
YGYANG发布了新的文献求助10
17秒前
隐形曼青应助斯文的毛豆采纳,获得10
17秒前
科研小白完成签到,获得积分10
19秒前
22秒前
丘比特应助自信绮菱采纳,获得10
24秒前
25秒前
木子完成签到 ,获得积分10
25秒前
28秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
大力灵凡完成签到,获得积分10
32秒前
希望天下0贩的0应助阿钰采纳,获得50
32秒前
善学以致用应助記yian采纳,获得10
33秒前
34秒前
34秒前
35秒前
缓慢的饼干完成签到,获得积分10
36秒前
39秒前
40秒前
林g发布了新的文献求助10
41秒前
zha完成签到,获得积分10
42秒前
42秒前
43秒前
张萌发布了新的文献求助10
44秒前
秉烛夜游发布了新的文献求助10
46秒前
小肥吴发布了新的文献求助10
46秒前
英俊延恶发布了新的文献求助10
48秒前
jike发布了新的文献求助10
48秒前
量子星尘发布了新的文献求助10
53秒前
57秒前
Lucas应助stacy采纳,获得10
57秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865360
求助须知:如何正确求助?哪些是违规求助? 3407621
关于积分的说明 10655266
捐赠科研通 3131725
什么是DOI,文献DOI怎么找? 1727276
邀请新用户注册赠送积分活动 832220
科研通“疑难数据库(出版商)”最低求助积分说明 780189