桃蚜
拟除虫菊酯
生物
蜘蛛毒素
击倒阻力
钠通道
钙通道
融合蛋白
蚜虫
生物化学
化学
植物
钠
钙
重组DNA
受体
杀虫剂
基因
有机化学
农学
氟氯氰菊酯
谷氨酸受体
作者
Sheng Yang,Elaine Fitches,Prashant Pyati,John A. Gatehouse
摘要
The recombinant fusion proteins Pl1a/GNA and Hv1a/GNA contain the spider venom peptides δ-amaurobitoxin-PI1a or ω-hexatoxin-Hv1a respectively, linked to snowdrop lectin (GNA). Pl1a targets receptor site 4 of insect voltage-gated sodium channels (NaCh), while Hv1a targets voltage-gated calcium channels. Insecticide-resistant strains of peach-potato aphid (Myzus persicae) contain mutations in NaCh. The pyrethroid-resistant kdr (794J) and super-kdr (UKO) strains contain mutations at residues L1014 and M918 in the channel α-subunit respectively, while the kdr + super-kdr strain (4824J), insensitive to pyrethroids, contains mutations at both L1014 and M918.Pl1a/GNA and Hv1a/GNA fusion proteins have estimated LC50 values of 0.35 and 0.19 mg mL(-1) when fed to wild-type M. persicae. For insecticide-resistant aphids, LC50 for the Pl1a/GNA fusion protein increased by 2-6-fold, correlating with pyrethroid resistance (wild type < kdr < super-kdr < kdr + super-kdr strains). In contrast, LC50 for the Hv1a/GNA fusion protein showed limited correlation with pyrethroid resistance.Mutations in the sodium channel in pyrethroid-resistant aphids also protect against a fusion protein containing a sodium-channel-specific toxin, in spite of differences in ligand-channel interactions, but do not confer resistance to a fusion protein targeting calcium channels. The use of fusion proteins with differing targets could play a role in managing pesticide resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI