PGC-1 family coactivators and cell fate: Roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria–nucleus signalling

线粒体生物发生 线粒体 神经退行性变 生物 细胞生物学 细胞适应 逆行信号 生物发生 背景(考古学) DNAJA3公司 细胞命运测定 神经科学 线粒体融合 疾病 生物信息学 转录因子 遗传学 线粒体DNA 医学 病理 基因 古生物学
作者
Aleck W.E. Jones,Zhi Yao,José M. Vicencio,Agnieszka Karkucińska-Więckowska,György Szabadkai
出处
期刊:Mitochondrion [Elsevier BV]
卷期号:12 (1): 86-99 被引量:117
标识
DOI:10.1016/j.mito.2011.09.009
摘要

Over the past two decades, a complex nuclear transcriptional machinery controlling mitochondrial biogenesis and function has been described. Central to this network are the PGC-1 family coactivators, characterised as master regulators of mitochondrial biogenesis. Recent literature has identified a broader role for PGC-1 coactivators in both cell death and cellular adaptation under conditions of stress, here reviewed in the context of the pathology associated with cancer, neurodegeneration and cardiovascular disease. Moreover, we propose that these studies also imply a novel conceptual framework on the general role of mitochondrial dysfunction in disease. It is now well established that the complex nuclear transcriptional control of mitochondrial biogenesis allows for adaptation of mitochondrial mass and function to environmental conditions. On the other hand, it has also been suggested that mitochondria alter their function according to prevailing cellular energetic requirements and thus function as sensors that generate signals to adjust fundamental cellular processes through a retrograde mitochondria-nucleus signalling pathway. Therefore, altered mitochondrial function can affect cell fate not only directly by modifying cellular energy levels or redox state, but also indirectly, by altering nuclear transcriptional patterns. The current literature on such retrograde signalling in both yeast and mammalian cells is thus reviewed, with an outlook on its potential contribution to disease through the regulation of PGC-1 family coactivators. We propose that further investigation of these pathways will lead to the identification of novel pharmacological targets and treatment strategies to combat disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李健的小迷弟应助王小明采纳,获得10
4秒前
MingQue完成签到,获得积分10
7秒前
Pepsi完成签到,获得积分10
8秒前
失眠天亦完成签到,获得积分10
9秒前
gumiho1007完成签到,获得积分10
13秒前
16秒前
二猫完成签到,获得积分10
19秒前
大胆易巧完成签到 ,获得积分10
20秒前
王小明发布了新的文献求助10
23秒前
29秒前
王小明完成签到,获得积分10
30秒前
HOME发布了新的文献求助10
32秒前
清新的寄风完成签到 ,获得积分10
36秒前
39秒前
lee完成签到,获得积分10
39秒前
HOME完成签到,获得积分20
40秒前
HEAUBOOK应助终生科研徒刑采纳,获得20
41秒前
Edith发布了新的文献求助10
44秒前
46秒前
猫猫头发布了新的文献求助10
47秒前
黑大侠完成签到 ,获得积分10
47秒前
orixero应助科研通管家采纳,获得10
47秒前
华仔应助科研通管家采纳,获得10
47秒前
pluto应助科研通管家采纳,获得10
47秒前
乐乐应助科研通管家采纳,获得10
47秒前
47秒前
47秒前
49秒前
666完成签到,获得积分10
52秒前
如意葶发布了新的文献求助10
54秒前
YuanLeiZhang完成签到,获得积分10
55秒前
msd2phd完成签到,获得积分10
56秒前
光亮的冰薇完成签到 ,获得积分10
56秒前
April完成签到 ,获得积分10
58秒前
58秒前
无花果应助如意葶采纳,获得10
59秒前
aa完成签到,获得积分10
1分钟前
科研通AI5应助dyfsj采纳,获得10
1分钟前
drsunofoph123发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781306
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228424
捐赠科研通 3041839
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751