Broyden–Fletcher–Goldfarb–Shanno算法
鞍点
简单(哲学)
计算机科学
应用数学
拟牛顿法
方案(数学)
马鞍
点(几何)
计算化学
算法
数学
能量最小化
数学优化
几何学
牛顿法
物理
数学分析
化学
量子力学
非线性系统
认识论
哲学
异步通信
计算机网络
作者
John D. Head,Michael C. Zerner
标识
DOI:10.1016/0009-2614(85)80574-1
摘要
Abstract Most quantum-chemical calculations for geometries evaluate first derivatives of the energy with respect to nuclear positions analytically and then use update procedures to build up information on the second derivatives as they step along the potential energy surface toward a minimum (stable geometry) or simple saddle point (transition state). We describe here the use of the Broyden—Fletcher—Goldfarb—Shanno (BFGS) quasi-Newton update used in conjunction with a partial line search. We have found BFGS superior to the other update formulae we have examined. In a particular, it is superior to the Murtagh—Sargent (MS) scheme that is commonly used in geometry determinations. The advantage of the BFGS update over the MS scheme becomes especially dramatic for large molecular systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI