桁架
刚度
背景(考古学)
秩(图论)
有限元法
直接刚度法
刚度矩阵
计算机科学
结构工程
情态动词
基质(化学分析)
代表(政治)
算法
数学
工程类
材料科学
地质学
古生物学
复合材料
组合数学
高分子化学
法学
政治
政治学
出处
期刊:AIAA Journal
[American Institute of Aeronautics and Astronautics]
日期:1996-12-01
卷期号:34 (12): 2615-2621
被引量:63
摘要
A new optimal update method for the correlation of dynamic structural finite element models with modal data is presented. The method computes a minimum-rank solution for the perturbations of the elemental stiffness parameters while constraining the connectivity of the global stiffness matrix. The resulting model contains a more accurate representation of the dynamics of the test structure, and the changes between the original model and the updated model can be interpreted as modeling errors or as changes in the structure resulting from damage. The motivation for the method is presented in the context of existing optimal matrix update procedures. This method is distinct from past minimum-rank optimal update procedures because it computes minimum-rank updates directly to the elemental stiffness parameters. The method is demonstrated numerically on a spring-mass system and is also applied to experimental data from the NASA Langley Research Center eight-bay truss damage detection experiment. The results demonstrate that the proposed procedure may be useful for updating elemental stiffness parameters in the context of damage detection and model refinement.
科研通智能强力驱动
Strongly Powered by AbleSci AI