空位缺陷
氧气
兴奋剂
密度泛函理论
催化作用
吸附
材料科学
化学物理
光化学
分子
无机化学
Atom(片上系统)
化学
计算化学
结晶学
物理化学
有机化学
光电子学
计算机科学
嵌入式系统
摘要
As an oxidation-reduction catalyst, ceria can catalyze molecular oxidation and reduction. There has been a focus on understanding and enhancing the vacancy formation process to improve the oxidative power of ceria. However, it is important to also address healing of the surface vacancy. To investigate healing of oxygen vacancies in ceria, we study the interaction of atomic and molecular oxygen and NO2 with oxygen vacancies on gold-doped (110) and (100) surfaces using density functional theory, corrected for on-site Coulomb interactions (DFT+U). For atomic and molecular oxygen, adsorption at the reduced surface is favorable and results in an oxygen atom sitting in an oxygen lattice site, healing the oxygen vacancy. On undoped surfaces, O2 adsorbs as a peroxo (O22−) species. However, on the doped (110) surface a superoxo (O2−) species is present. When NO2 adsorbs (exothermically) at a divacancy surface, one oxygen of the molecule sits in the vacancy site and the N–O distances are elongated and an [NO2]− anion forms, similar to the undoped surface. Vacancy healing of ceria surfaces is favorable, even if vacancy formation is enhanced, justifying the current focus on improving the oxidative power of ceria. We briefly examine a catalytic cycle: the reaction of CO with adsorbed O2 on the undoped and doped surfaces, and find that the doped (110) surface facilitates CO oxidation.
科研通智能强力驱动
Strongly Powered by AbleSci AI