马尔科夫蒙特卡洛
贝叶斯概率
计算机科学
成分数据
转化(遗传学)
后验概率
数据集
马尔可夫链
高斯分布
数据挖掘
数学
统计
算法
人工智能
物理
基因
量子力学
化学
生物化学
作者
Håkon Tjelmeland,Kjetill Vassmo Lund
标识
DOI:10.1080/0266476022000018547
摘要
Compositional data are vectors of proportions, specifying fractions of a whole. Aitchison (1986) defines logistic normal distributions for compositional data by applying a logistic transformation and assuming the transformed data to be multi- normal distributed. In this paper we generalize this idea to spatially varying logistic data and thereby define logistic Gaussian fields. We consider the model in a Bayesian framework and discuss appropriate prior distributions. We consider both complete observations and observations of subcompositions or individual proportions, and discuss the resulting posterior distributions. In general, the posterior cannot be analytically handled, but the Gaussian base of the model allows us to define efficient Markov chain Monte Carlo algorithms. We use the model to analyse a data set of sediments in an Arctic lake. These data have previously been considered, but then without taking the spatial aspect into account.
科研通智能强力驱动
Strongly Powered by AbleSci AI