甲烷
可交付成果
吸附
共价有机骨架
共价键
天然气
巴(单位)
计算机科学
多孔性
计算
纳米技术
材料科学
比表面积
表面改性
化学工程
化学
物理
复合材料
工程类
系统工程
有机化学
气象学
催化作用
算法
作者
Minman Tong,Youshi Lan,Qin Zheng-long,Chongli Zhong
标识
DOI:10.1021/acs.jpcc.8b04742
摘要
CH4 storage associated with adsorbed natural gas technology attracts considerable researches on finding porous materials with remarkable CH4 delivery performance. In this work, we update the online accessible computation-ready, experimental (CoRE) covalent organic frameworks (COFs) database with 280 COFs in 12 topologies. All framework structures are constructed and compiled from the respective experimental studies and are further evaluated for CH4 delivery. The highest deliverable capacity (DC) between 65 and 5.8 bar among the CoRE COFs is 190 v(STP)/v at 298 K achieved by 3D PI-COF-4. Structure–property relationships show that large volumetric surface area generally benefits CH4 delivery. 2D-COFs can also be top performing materials if constructing their pore channels is passable in three dimensions, as the volumetric surface area will be increased accordingly. This idea can be realized by enlarging the interlayer spacings of 2D-COFs. We also evaluate the DC of CoRE COFs under conditions of 233 K, 65 bar (storage) and 358 K, 5.8 bar (discharge). The highest DC obtained from the CoRE COFs and the designed 2D-COFs are 314 and 337 v(STP)/v, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI