MS/MS Spectrum Prediction for Modified Peptides Using pDeep2 Trained by Transfer Learning

化学 磷酸肽 学习迁移 人工智能 模式识别(心理学) 计算机科学 生物化学
作者
Wen‐Feng Zeng,Xie‐Xuan Zhou,Wenjing Zhou,Hao Chi,Jianfeng Zhan,Si‐Min He
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:91 (15): 9724-9731 被引量:83
标识
DOI:10.1021/acs.analchem.9b01262
摘要

In the past decade, tandem mass spectrometry (MS/MS)-based bottom-up proteomics has become the method of choice for analyzing post-translational modifications (PTMs) in complex mixtures. The key to the identification of the PTM-containing peptides and localization of the PTM-modified residues is to measure the similarities between the theoretical spectra and the experimental ones. An accurate prediction of the theoretical MS/MS spectra of the modified peptides will improve the similarity measurement. Here, we proposed the deep-learning-based pDeep2 model for PTMs. We used the transfer learning technique to train pDeep2, facilitating the training with a limited scale of benchmark PTM data. Using the public synthetic PTM data sets, including the synthetic phosphopeptides and 21 synthetic PTMs from ProteomeTools, we showed that the model trained by transfer learning was accurate (>80% Pearson correlation coefficients were higher than 0.9), and was significantly better than the models trained without transfer learning. We also showed that accurate prediction of the fragment ion intensities of the PTM neutral loss, for example, the phosphoric acid loss (−98 Da) of the phosphopeptide, will improve the discriminating power to distinguish the true phosphorylated residue from its adjacent candidate sites. pDeep2 is available at https://github.com/pFindStudio/pDeep/tree/master/pDeep2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vee应助卡夫卡的熊采纳,获得10
2秒前
2秒前
超帅的碱完成签到,获得积分10
3秒前
研友_LXONx8发布了新的文献求助10
4秒前
今后应助星星采纳,获得10
5秒前
6秒前
6秒前
6秒前
终澈完成签到,获得积分10
7秒前
乐乐应助向上采纳,获得10
7秒前
12305014077完成签到,获得积分10
7秒前
卡机了发布了新的文献求助20
7秒前
8秒前
8秒前
8秒前
9秒前
Tugeouc完成签到,获得积分10
9秒前
番茄炒西红柿完成签到,获得积分10
9秒前
10秒前
称心曼安应助月神满月采纳,获得10
10秒前
12秒前
陈晨发布了新的文献求助10
12秒前
水悟子发布了新的文献求助10
12秒前
12秒前
旺仔发布了新的文献求助10
13秒前
墨羽发布了新的文献求助10
13秒前
Lhjyad发布了新的文献求助10
13秒前
13秒前
14秒前
Enrich发布了新的文献求助10
14秒前
星辰大海应助MiaoRui采纳,获得10
15秒前
15秒前
卡夫卡的熊完成签到,获得积分10
15秒前
hy完成签到,获得积分10
16秒前
16秒前
hm1999发布了新的文献求助10
17秒前
TuTu发布了新的文献求助10
17秒前
17秒前
123发布了新的文献求助20
17秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819296
求助须知:如何正确求助?哪些是违规求助? 3362356
关于积分的说明 10416633
捐赠科研通 3080508
什么是DOI,文献DOI怎么找? 1694605
邀请新用户注册赠送积分活动 814703
科研通“疑难数据库(出版商)”最低求助积分说明 768388