A Framework for Analyzing Influencer Marketing in Social Networks: Selection and Scheduling of Influencers

影响力营销 计算机科学 社会化媒体 业务
作者
Rakesh Mallipeddi,Subodha Kumar,Chelliah Sriskandarajah,Yunxia Zhu
出处
期刊:Social Science Research Network 被引量:4
标识
DOI:10.2139/ssrn.3255198
摘要

Explosive growth in the number of users on various social media platforms has transformed the way firms strategize their marketing activities. To take advantage of the vast size of social networks, firms have now turned their attention to influencer marketing wherein they employ independent influencers to promote their products on social media platforms. Despite the recent growth in influencer marketing, the problem of network seeding, i.e., identification of influencers to optimally post a firm's message or advertisement, neither has been rigorously studied in the academic literature nor has been carefully addressed in practice. We develop a data-driven optimization framework to help a firm successfully conduct (i) short-horizon and (ii) long-horizon influencer marketing campaigns, for which two models are developed, respectively, to maximize the firm’s benefit. The models are based on the interactions with marketers, observation of firms’ message placements on social media, and model parameters estimated via empirical analysis performed on data from Twitter. Our empirical analysis discovers the effects of the collective influence of multiple influencers and finds two important parameters to be included in the models, namely, multiple exposure effect and forgetting effect. For the short-horizon campaign, we develop an optimization model to select influencers and present structural properties for the model. Using these properties, we develop a mathematical programming based polynomial-time procedure to provide near-optimal solutions. For the long-horizon problem, we develop an efficient solution procedure to simultaneously select influencers and schedule their message postings over a planning horizon. We demonstrate the superiority of our solution strategies for both short- and long-horizon problems against multiple benchmark methods used in practice. Finally, we present several managerially relevant insights for firms in the influencer marketing context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XIeXIe完成签到,获得积分10
1秒前
1秒前
3秒前
xiaohhh发布了新的文献求助10
4秒前
MRM发布了新的文献求助10
4秒前
jackystone发布了新的文献求助20
5秒前
5秒前
恣意完成签到 ,获得积分10
6秒前
晨光中完成签到,获得积分10
6秒前
7秒前
hyp7347发布了新的文献求助10
9秒前
补作业的糖豆完成签到,获得积分10
9秒前
9秒前
涵泽发布了新的文献求助10
10秒前
帅气的雁枫完成签到,获得积分10
13秒前
dyqdzh发布了新的文献求助50
13秒前
wise111发布了新的文献求助10
14秒前
15秒前
15秒前
文艺书雪完成签到 ,获得积分10
16秒前
赘婿应助花开不败采纳,获得10
16秒前
千里江山一只蝇完成签到,获得积分10
18秒前
CodeCraft应助Mr.Unknown采纳,获得10
19秒前
qiulong发布了新的文献求助10
20秒前
情怀应助ppan采纳,获得10
21秒前
22秒前
23秒前
23秒前
jiangfei完成签到,获得积分10
24秒前
27秒前
吃颗糖吧完成签到,获得积分20
28秒前
sgt发布了新的文献求助10
28秒前
29秒前
小蘑菇应助wise111采纳,获得10
29秒前
32秒前
dsf完成签到,获得积分10
32秒前
33秒前
wang完成签到,获得积分0
33秒前
Mr.Unknown发布了新的文献求助10
34秒前
Hello应助小雒雒采纳,获得10
36秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799173
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321997
捐赠科研通 3061303
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445