PVT1型
细胞凋亡
情感(语言学)
生物
癌症研究
表达式(计算机科学)
程序性细胞死亡
结直肠癌
细胞
遗传学
癌症
基因
下调和上调
心理学
沟通
长非编码RNA
程序设计语言
计算机科学
作者
Wanli Zhang,Jun Xiao,Xiaoming Lu,Tao Liu,Xin Jin,Yong Xiao,Xiaoqi He
摘要
In this study, we aimed to investigate the potential correlation between rs13281615/rs2910164 polymorphisms and the prognosis of colon cancer (CC). Taqman was utilized to genotype the rs13281615/rs2910164 polymorphisms in recruited subjects. Kaplan-Meier survival curves were calculated to study the prognostic values of different genotypes of rs13281615/rs2910164 polymorphisms. Real-time polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays were conducted to establish a potential signaling pathway underlying the role of rs13281615/rs2910164 polymorphisms, whereas bioinformatics analysis and luciferase reporter assays were performed to identify plasmacytoma variant translocation 1 (PVT1) and cyclooxygenase-2 (COX2) as targets of microRNA-146a (miR-146a). No significant difference was observed in respect to clinical characteristics among subjects with different genotypes. However, patients genotyped as GG/CC + GC showed the lowest chance of survival, whereas patients of GA + AA/GG genotype showed the highest chance of survival. Moreover, the relative expressions of PVT1, prostaglandin E2 (PGE2), and COX2 were the lowest and the relative expression of miR-146a was the highest in GA + AA/GG subjects, validating the roles of PVT1, miR-146a, and COX2 in CC. In addition, both PVT1 and COX2 were identified as virtual targets of miR-146a, and the luciferase activities of cells cotransfected with wild-type PVT1/COX2 and miR-146a mimics were significantly reduced. Moreover, the presence of PVT1 decreased the level of miR-146a whereas increasing the messenger RNA and protein levels of COX2, thus establishing a PVT1/miR-146a/COX2 signaling pathway underlying the pathogenesis of CC. The presence of rs13281615 G > A polymorphism on PVT1 and the rs2910164 C > G polymorphism on miR-146a contributes to a favorable prognosis in CC patients via modulating the activity of the PVT1/miR-146a/COX2 signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI