Unlocking Strong Second‐Harmonic Generation in Deep‐UV‐Transparent Polar Organic Sulfonates through Connectivity Regulation

作者
Fei-Yuan Gong,Xingxing Jiang,Kaining Duanmu,Chao Wu,Lin Zheshuai,Zhipeng Huang,Mark G Humphrey,Chi Zhang
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/anie.202521786
摘要

Abstract The development of high‐performance ultraviolet nonlinear optical (UV NLO) crystals requires both highly efficient NLO‐functional primitives and their optimal alignment within non‐centrosymmetric structures—a dual challenge difficult to address. In this study, we present a connectivity‐regulation approach for construction of polar organic salts, which has been experimentally verified by systematically varying either the counter‐cations or, more efficiently, the anionic alkyl tails of aliphatic sulfonates. Compositional evolution drives change in alignment of the sulfonate anions from antiparallel in the parent centrosymmetric compound Li[SO 3 (CH 2 ) 2 X](H 2 O) (X = Cl and Br) to staggered antiparallel in the polar analogues Na[SO 3 (CH 2 ) 2 X](H 2 O) and then to parallel in Li[SO 3 (CH 2 ) 2 OH], affording a connectivity‐dependent enhancement in linear and nonlinear optical properties. Li[SO 3 (CH 2 ) 2 OH] simultaneously exhibits an ultrawide bandgap (> 6.53 eV) and the largest second‐harmonic generation among deep‐UV‐transparent sulfonates (3.0 × KH 2 PO 4 @ 1064 nm), with sufficient birefringence to enable phase‐matched fourth‐harmonic generation at 266 nm from Nd:YAG lasers. Theoretical calculations and crystal structure analyses suggest that the parallel alignment of the [SO 3 (CH 2 ) 2 OH] − anions, facilitated through hydrogen‐bonding interactions and ionic bonding, is responsible for the strong optical performance. This study highlights that structural connectivity change can profoundly influence key NLO properties, initiating a new avenue for development of high‐performance UV NLO organic salts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
老王发布了新的文献求助10
2秒前
2秒前
Zq完成签到,获得积分10
3秒前
慕青应助杨梦珺采纳,获得10
3秒前
不倦发布了新的文献求助10
4秒前
大模型应助key采纳,获得10
4秒前
4秒前
4秒前
hou发布了新的文献求助10
5秒前
5秒前
6秒前
leier发布了新的文献求助10
6秒前
64658应助CLZ采纳,获得10
6秒前
快乐的小蜜蜂完成签到,获得积分10
6秒前
lucky发布了新的文献求助10
7秒前
季子超发布了新的文献求助10
7秒前
8秒前
科研通AI6应助无欲无求采纳,获得10
8秒前
咪咪大王统治世界完成签到,获得积分10
8秒前
8秒前
skye完成签到,获得积分10
9秒前
科研小白发布了新的文献求助10
9秒前
hhy发布了新的文献求助100
10秒前
精密设备完成签到,获得积分10
10秒前
11秒前
ddddd完成签到,获得积分10
11秒前
11秒前
曹明佳发布了新的文献求助10
11秒前
12秒前
亚李完成签到 ,获得积分10
12秒前
Lucas应助wo采纳,获得10
12秒前
hou关闭了hou文献求助
12秒前
金金完成签到,获得积分10
12秒前
浮游应助qyp采纳,获得10
13秒前
烂漫时发布了新的文献求助10
13秒前
默己完成签到 ,获得积分10
14秒前
15秒前
trq关注了科研通微信公众号
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195591
求助须知:如何正确求助?哪些是违规求助? 4377513
关于积分的说明 13632857
捐赠科研通 4232862
什么是DOI,文献DOI怎么找? 2321855
邀请新用户注册赠送积分活动 1320039
关于科研通互助平台的介绍 1270480