亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-dimensional omics integrated machine learning framework identifies macrophage-fibroblast-tumor co-infiltration patterns to predict prognosis in gastric cancer

作者
Qi Wang,Yuan Ni,Sheng Lu,Benyan Zhang,Jun Ji,Qu Cai,Chao Yan,Feng Qi,Min Shi,Jun Zhang
出处
期刊:npj digital medicine [Springer Nature]
标识
DOI:10.1038/s41746-025-02179-9
摘要

Gastric cancer (GC), of which cases with peritoneal metastasis are particularly challenging, retains its position of being highly complex and remarkably resistant to therapy. Understanding the spatial heterogeneity and leveraging recent technologies such as machine learning to uncover explanatory patterns remains critical to truly understanding this disease. Here, we conducted spatial transcriptomics analysis to identify distinct niches within GC tissues. Among these, a niche enriched with fibroblasts and macrophages exhibited a striking spatial co-infiltration pattern with tumor cells dominant niches. Further validation by multiplex immunofluorescence highlighted the coordinated cellular interactions that characterize the TME. Through integration of sc-RNA with bulk RNA sequencing, we identified DAB2⁺ TAMs and ACTA2⁺ myCAFs as the main contributors to this co-infiltration pattern. NicheNet analysis further revealed that the PLAU-PLAUR signaling axis holds a central regulatory role in the communication between macrophages, fibroblasts and tumor cells. Given the prognostic value of this spatial pattern, we additionally applied transfer learning based on an ImageNet pre-trained ResNet-50 model to develop a machine learning framework that can accurately recognize the macrophage-fibroblast-malignant cell co-infiltration pattern, called Gastric-Discovery. Potentially, Gastric-Discovery could be a tool for precise patient stratification and provides novel insights into the dynamic architecture of the TME.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunziy完成签到,获得积分10
刚刚
zy发布了新的文献求助10
2秒前
2秒前
琳666发布了新的文献求助10
4秒前
11秒前
14秒前
soler应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
hyeseongu完成签到,获得积分10
17秒前
111发布了新的文献求助10
19秒前
19秒前
凤里完成签到 ,获得积分10
23秒前
pluto应助咿呀咿呀采纳,获得10
26秒前
学术狂徒劲别完成签到,获得积分10
29秒前
29秒前
shushu完成签到 ,获得积分10
30秒前
36秒前
Orange应助111采纳,获得10
38秒前
42秒前
45秒前
NexusExplorer应助雨乐采纳,获得10
45秒前
48秒前
俊逸芸遥完成签到,获得积分10
49秒前
55秒前
1分钟前
junsizzz发布了新的文献求助50
1分钟前
1分钟前
junsizzz完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ding应助Leonard采纳,获得10
1分钟前
1分钟前
健忘的乐菱完成签到,获得积分10
1分钟前
火星上的柏柳完成签到 ,获得积分10
1分钟前
搜集达人应助zjq采纳,获得10
1分钟前
ljl86400完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449646
求助须知:如何正确求助?哪些是违规求助? 4557736
关于积分的说明 14264851
捐赠科研通 4480885
什么是DOI,文献DOI怎么找? 2454582
邀请新用户注册赠送积分活动 1445382
关于科研通互助平台的介绍 1421096