催化作用
电化学
甲醇
化学工程
化学
耐久性
吸附
阴极
材料科学
氧还原反应
电化学能量转换
分离器(采油)
碳纤维
甲醇燃料
氧还原
燃料电池
氧气
质子交换膜燃料电池
金属
无机化学
储能
纳米技术
膜
金属有机骨架
铂金
可持续能源
电化学储能
基质(化学分析)
生物量(生态学)
能量转换
直接乙醇燃料电池
协同催化
电催化剂
作者
Min Su Cho,Yanmei Zang,S. Park,Byeong‐Seon An,Ho Jin Lee,Ashishi Gaur,Ghulam Muhammad Ali,Mingony Kim,K. D. Chung,SungBin Park,Yung‐Eun Sung,Daehae Kim,Ki Jae Kim,Chang Woo Myung,Han Hyuksu
摘要
ABSTRACT Anion exchange membrane fuel cells (AEMFCs) offer a sustainable energy solution with non‐precious metal catalysts, reduced degradation, and fuel flexibility. However, the sluggish oxygen reduction reaction (ORR) at the cathode and durability concerns impede commercialization. To address these challenges, this study presents a dual‐atomic SiFe–N–C catalyst derived from pinecones, a naturally abundant biomass resource. The catalyst features a nitrogen‐rich porous carbon matrix that stabilizes Si–Fe dual‐atomic sites during pyrolysis. Advanced analyses confirm Fe–Si and Fe–N bonds, which synergistically enhance ORR activity by optimizing electronic structures and intermediate adsorption energies. The SiFe–N–C catalyst surpasses Pt/C and Fe–N–C single‐atom benchmarks with superior ORR activity and excellent long‐term durability supported by high resistance to CO poisoning as well as methanol crossover. It also demonstrates a promising electrochemical performance as a catalytic material for the separator of Li–S battery. Mechanistic studies reveal that the Si–Fe dual‐atomic configuration promotes an efficient Fe–O–O–Si pathway, reducing energy barriers and offering a cost‐effective, high‐performance solution for electrochemical energy conversion and storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI