光电流
单层
自旋电子学
极化(电化学)
自旋极化
材料科学
光电子学
密度泛函理论
光子能量
光子
空位缺陷
凝聚态物理
光电导性
消光比
物理
自旋(空气动力学)
电子能带结构
探测器
圆极化
带隙
光子偏振
分子物理学
纳米光子学
态密度
双稳态
超晶格
光电探测器
维数之咒
线极化
消光(光学矿物学)
作者
Sijie Wang,Ying Chen,Xuancheng Zhu,Zhihua Song,Wang Xianping,Sicong Zhu,Zheng-qi Liu,Jun Li,Yanliang He,Yuanfeng Zhu,Wen Yuan
标识
DOI:10.1088/1402-4896/ae32d1
摘要
Abstract Defect engineering enables precise manipulation of optoelectronic and spintronic properties in two-dimensional (2D) semiconductors. Density functional theory (DFT) calculations reveal that atomic vacancies in monolayer TlBiSe3 induce semiconductor-to-metal transition or semiconductor-to-semimetal transition through band structure reconstruction. In the infrared-visible spectrum (0.1-3.0 eV), defect-engineered monolayer TlBiSe3 exhibits up to 5.3-fold enhanced self-powered photocurrents via the linear photogalvanic effect (PGE) compared to pristine counterparts. This enhancement enables polarization-sensitive detection, with photocurrent exhibits characteristic dependence on polarization angle. Notably, the Se3-vacancy configuration achieves a peak photocurrent density of 3.17 at 1.9 eV, while the Se1-vacancy yields a record extinction ratio of 510.08 at 2.6 eV. Furthermore, Bi vacancy generates near-unity spin-polarized currents ( efficiency) and two-bit reconfigure spin transport channels through photon energy (0.1/0.8 eV) or polarization angle (/) modulation. These findings establish defect-engineered TlBiSe3 as a versatile platform for self-powered polarization detectors and reconfigurable spin encoders.
科研通智能强力驱动
Strongly Powered by AbleSci AI