数学
离散化
数值分析
非线性系统
摄动(天文学)
线性化
数学分析
奇异摄动
应用数学
量子力学
物理
作者
Ram Jiwrai,R.C. Mittal
出处
期刊:Journal of applied mathematics & informatics
[Korean Society of Computational and Applied Mathematics]
日期:2011-05-01
卷期号:29: 813-829
被引量:12
标识
DOI:10.14317/jami.2011.29.3_4.813
摘要
In this article, we present a numerical scheme for solving singularly perturbed (i.e. highest -order derivative term multiplied by small parameter) Burgers-Huxley equation with appropriate initial and boundary conditions. Most of the traditional methods fail to capture the effect of layer behavior when small parameter tends to zero. The presence of perturbation parameter and nonlinearity in the problem leads to severe difficulties in the solution approximation. To overcome such difficulties the present numerical scheme is constructed. In construction of the numerical scheme, the first step is the dicretization of the time variable using forward difference formula with constant step length. Then, the resulting non linear singularly perturbed semidiscrete problem is linearized using quasi-linearization process. Finally, differential quadrature method is used for space discretization. The error estimate and convergence of the numerical scheme is discussed. A set of numerical experiment is carried out in support of the developed scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI