Structural Deep Network Embedding

计算机科学 嵌入 人工智能 利用 网络科学 网络体系结构 网络模型 组分(热力学) 编队网络 理论计算机科学 数据挖掘 机器学习 复杂网络 万维网 物理 热力学 计算机安全
作者
Daixin Wang,Peng Cui,Wenwu Zhu
标识
DOI:10.1145/2939672.2939753
摘要

Network embedding is an important method to learn low-dimensional representations of vertexes in networks, aiming to capture and preserve the network structure. Almost all the existing network embedding methods adopt shallow models. However, since the underlying network structure is complex, shallow models cannot capture the highly non-linear network structure, resulting in sub-optimal network representations. Therefore, how to find a method that is able to effectively capture the highly non-linear network structure and preserve the global and local structure is an open yet important problem. To solve this problem, in this paper we propose a Structural Deep Network Embedding method, namely SDNE. More specifically, we first propose a semi-supervised deep model, which has multiple layers of non-linear functions, thereby being able to capture the highly non-linear network structure. Then we propose to exploit the first-order and second-order proximity jointly to preserve the network structure. The second-order proximity is used by the unsupervised component to capture the global network structure. While the first-order proximity is used as the supervised information in the supervised component to preserve the local network structure. By jointly optimizing them in the semi-supervised deep model, our method can preserve both the local and global network structure and is robust to sparse networks. Empirically, we conduct the experiments on five real-world networks, including a language network, a citation network and three social networks. The results show that compared to the baselines, our method can reconstruct the original network significantly better and achieves substantial gains in three applications, i.e. multi-label classification, link prediction and visualization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Scss完成签到,获得积分10
刚刚
唐唐发布了新的文献求助10
1秒前
谦让的牛排完成签到 ,获得积分10
1秒前
踢踢踢踢踢死你完成签到,获得积分10
2秒前
2秒前
Owen应助小丸子采纳,获得10
2秒前
3秒前
3秒前
Akim应助犹豫的雯采纳,获得30
4秒前
5秒前
5秒前
6秒前
6秒前
yyy完成签到,获得积分10
6秒前
危莉关注了科研通微信公众号
8秒前
9秒前
可爱的函函应助zHu1采纳,获得10
9秒前
LioXH完成签到,获得积分10
9秒前
9秒前
Swagger完成签到,获得积分10
9秒前
阿良发布了新的文献求助10
10秒前
10秒前
ninghan发布了新的文献求助10
10秒前
天天快乐应助龙思甜采纳,获得10
11秒前
坦率笑珊发布了新的文献求助10
12秒前
俏皮的鸽子完成签到,获得积分10
12秒前
海海完成签到,获得积分10
14秒前
15秒前
skyscraper完成签到,获得积分10
16秒前
刘47完成签到,获得积分10
16秒前
情怀应助安寒采纳,获得10
20秒前
危莉发布了新的文献求助10
20秒前
xin完成签到 ,获得积分10
21秒前
21秒前
cocopan发布了新的文献求助10
21秒前
22秒前
啦啦啦啦啦啦啦完成签到,获得积分10
23秒前
清新的一笑完成签到,获得积分10
23秒前
25秒前
遍地捡糖不要钱完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397228
求助须知:如何正确求助?哪些是违规求助? 4517421
关于积分的说明 14063983
捐赠科研通 4429352
什么是DOI,文献DOI怎么找? 2432332
邀请新用户注册赠送积分活动 1424830
关于科研通互助平台的介绍 1403865