卡尔曼滤波器
稳健性(进化)
控制理论(社会学)
扩展卡尔曼滤波器
不变扩展卡尔曼滤波器
线性化
协方差
非线性系统
计算机科学
过滤问题
快速卡尔曼滤波
集合卡尔曼滤波器
滤波器(信号处理)
α-β滤光片
数学
算法
移动视界估计
统计
人工智能
物理
控制(管理)
量子力学
生物化学
化学
计算机视觉
基因
作者
Kai Xiong,Chunling Wei,Liangdong Liu
标识
DOI:10.1109/tsmca.2009.2034836
摘要
In this correspondence paper, a novel robust extended Kalman filter (REKF) for discrete-time nonlinear systems with stochastic uncertainties is proposed. The filter is derived to guarantee an optimized upper bound on the state estimation error covariance despite the model uncertainties as well as the linearization errors. Further analysis shows that the proposed filter has robustness against process noises, measurement noises, and model uncertainties. In addition, the new method is applied in an X-ray pulsar positioning system. It is illustrated through numerical simulations that the REKF is more effective than the standard extended Kalman filter and the extended robust H ¿ filter.
科研通智能强力驱动
Strongly Powered by AbleSci AI