Inductive Graph-based Knowledge Tracing

追踪 计算机科学 图形 人工智能 知识图 机器学习 理论计算机科学 操作系统
作者
Demin Han,Dae‐Hee Kim,Keejun Han,Mun Yong Yi
标识
DOI:10.1109/bigcomp57234.2023.00023
摘要

The rise of virtual education and increase in distance, partly owing to the spread of COVID-19 pandemic, has made it more difficult for teachers to determine each student’s learning status. In this situation, knowledge tracing (KT), which tracks a student’s mastery of specific knowledge concepts, is receiving increasing attention. KT utilizes a sequence of studentexercise interactive activities to predict the mastery of concepts corresponding to a target problem, recommending appropriate learning resources to students and optimizing learning sequences for adaptive learning. With the development of deep learning, various studies have been proposed, such as sequential models using recurrent neural networks, attention models influenced by transformers, and graph-based models that depict the relationships between knowledge concepts. However, they all have common limitations in that they cannot utilize the learning activities of students other than the target student and can only use a limited form of exercise information. In this study, we have applied the concept of rating prediction to the studentexercise knowledge tracing problem and solved the limitations of the existing models. Our proposed Inductive Graph-based Knowledge Tracing (IGKT) designed to integrate structural information and various unrestricted types of additional information into the model through subgraph sampling, has been found superior over the existing models across two different datasets in predicting student performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石子完成签到 ,获得积分10
刚刚
丘比特应助wowser采纳,获得10
1秒前
lsy完成签到,获得积分10
4秒前
Aurora.H完成签到,获得积分10
4秒前
灵巧的十八完成签到 ,获得积分10
5秒前
曹文鹏完成签到 ,获得积分10
5秒前
颿曦关注了科研通微信公众号
7秒前
8秒前
9秒前
wowser完成签到,获得积分10
9秒前
FashionBoy应助chanhow采纳,获得10
10秒前
wowser发布了新的文献求助10
13秒前
14秒前
heiniu完成签到,获得积分10
15秒前
ning_qing完成签到 ,获得积分10
15秒前
liukang172完成签到,获得积分10
16秒前
李健应助贤惠的早晨采纳,获得10
18秒前
keplek完成签到 ,获得积分10
18秒前
19秒前
思源应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
雨水完成签到,获得积分10
20秒前
颿曦发布了新的文献求助10
20秒前
fbwg发布了新的文献求助10
22秒前
怕孤单的芷云完成签到,获得积分20
23秒前
23秒前
简单的易云完成签到,获得积分10
27秒前
世间安得双全法完成签到,获得积分0
27秒前
立军发布了新的文献求助10
28秒前
chanhow完成签到,获得积分10
29秒前
31秒前
NexusExplorer应助yangyj采纳,获得10
31秒前
chen完成签到 ,获得积分10
31秒前
夜捕白日梦完成签到,获得积分10
35秒前
35秒前
缥缈纲完成签到,获得积分10
36秒前
chanhow发布了新的文献求助10
36秒前
36秒前
haprier完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226967
捐赠科研通 3041589
什么是DOI,文献DOI怎么找? 1669510
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734