Uncertainty quantification and propagation across a multi-model computational framework for the tailored design of additively manufactured shape memory alloys

不确定度量化 替代模型 马尔科夫蒙特卡洛 计算机科学 实验设计 过程(计算) 蒙特卡罗方法 高斯过程 材料设计 材料科学 贝叶斯概率 高斯分布 机器学习 人工智能 数学 物理 统计 操作系统 万维网 量子力学
作者
Meelad Ranaiefar,Pejman Honarmandi,Jiahui Ye,Chen Zhang,Lei Xue,Alaa Elwany,İbrahim Karaman,Edwin J. Schwalbach,Raymundo Arróyave
出处
期刊:Additive manufacturing [Elsevier BV]
卷期号:68: 103506-103506 被引量:6
标识
DOI:10.1016/j.addma.2023.103506
摘要

Integrated computational materials engineering (ICME) combines the utility and efficiency of simulations with experimentation to drive forward materials design and discovery. These physics-based and data-driven frameworks have enabled material advancement by querying the complex process–structure–property–performance relationships to inform and guide experiments for the cost-effective design of alloy systems. In this study, a proven computational framework is presented and applied towards the tailored design of additively manufactured (AM) high-temperature NiTiHf shape-memory alloy (SMA) parts. Specifically, the effort deploys a design tool to attain specific transformation temperatures by composition control through differential evaporation, which in turn depends on processing conditions. This framework consists of a fast-acting discrete source model to simulate thermal history, a multi-layer model to account for composition evolution across melt pools, and a differential evaporation model to evaluate Nickel loss throughout the fabrication process. Besides the development of this multi-model chain, proper quantification of model uncertainties is critical to an ICME approach for materials design. Addressing these concerns, the parameter calibration and uncertainty quantification (UQ) of hierarchical model components is conducted through a Markov Chain Monte Carlo (MCMC) Bayesian approach over either the model itself or a representative Gaussian process-based surrogate model. These uncertainties are propagated across the models to the final response, i.e., martensitic start temperature. Subsequently, the hierarchical model framework is validated by comparing the experimental results with the most plausible values and uncertainty bounds obtained for the multi-model predictions at different processing conditions. From this calibrated and validated framework, process maps to streamline and illustrate the tailored design of AM high-temperature NiTiHf SMAs are developed, which demonstrates a promising path towards efficient design under uncertainty in additive manufacturing processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助某某采纳,获得10
1秒前
arisfield完成签到,获得积分10
2秒前
完美世界应助害羞笑白采纳,获得10
3秒前
4秒前
hrbykdxly完成签到,获得积分10
5秒前
yydidi完成签到,获得积分10
5秒前
Aurora发布了新的文献求助10
7秒前
yolo完成签到 ,获得积分10
7秒前
8秒前
科研通AI2S应助summer夏采纳,获得10
9秒前
斯文败类应助靓丽的夏兰采纳,获得10
12秒前
DO发布了新的文献求助20
12秒前
16秒前
赘婿应助陈文文采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
cuihao完成签到,获得积分10
19秒前
九姑娘完成签到 ,获得积分10
19秒前
20秒前
赘婿应助李某某采纳,获得10
20秒前
summer夏发布了新的文献求助10
21秒前
24秒前
善学以致用应助小熊采纳,获得10
24秒前
25秒前
路宝发布了新的文献求助10
25秒前
26秒前
27秒前
27秒前
六个点完成签到,获得积分20
27秒前
28秒前
28秒前
29秒前
29秒前
nn发布了新的文献求助10
30秒前
30秒前
一见你就笑完成签到 ,获得积分10
30秒前
30秒前
30秒前
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Changing towards human-centred technology 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248139
求助须知:如何正确求助?哪些是违规求助? 3781346
关于积分的说明 11871882
捐赠科研通 3434113
什么是DOI,文献DOI怎么找? 1884829
邀请新用户注册赠送积分活动 936366
科研通“疑难数据库(出版商)”最低求助积分说明 842295