Transfer Learning Facilitates the Prediction of Polymer–Surface Adhesion Strength

计算机科学 序列(生物学) 人工神经网络 学习迁移 补语(音乐) 人工智能 机器学习 反向 曲面(拓扑) 深度学习 数据挖掘 生物系统 化学 表型 几何学 基因 互补 生物 生物化学 数学
作者
Jiale Shi,Fahed Albreiki,Yamil J. Colón,Samanvaya Srivastava,Jonathan K. Whitmer
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (14): 4631-4640 被引量:20
标识
DOI:10.1021/acs.jctc.2c01314
摘要

Machine learning (ML) accelerates the exploration of material properties and their links to the structure of the underlying molecules. In previous work [Shi et al. ACS Applied Materials & Interfaces 2022, 14, 37161-37169.], ML models were applied to predict the adhesive free energy of polymer-surface interactions with high accuracy from the knowledge of the sequence data, demonstrating successes in inverse-design of polymer sequence for known surface compositions. While the method was shown to be successful in designing polymers for a known surface, extensive data sets were needed for each specific surface in order to train the surrogate models. Ideally, one should be able to infer information about similar surfaces without having to regenerate a full complement of adhesion data for each new case. In the current work, we demonstrate a transfer learning (TL) technique using a deep neural network to improve the accuracy of ML models trained on small data sets by pretraining on a larger database from a related system and fine-tuning the weights of all layers with a small amount of additional data. The shared knowledge from the pretrained model facilitates the prediction accuracy significantly on small data sets. We also explore the limits of database size on accuracy and the optimal tuning of network architecture and parameters for our learning tasks. While applied to a relatively simple coarse-grained (CG) polymer model, the general lessons of this study apply to detailed modeling studies and the broader problems of inverse materials design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿拉完成签到 ,获得积分10
刚刚
shen完成签到,获得积分10
1秒前
2秒前
2秒前
kkk发布了新的文献求助10
3秒前
3秒前
CodeCraft应助阔达可燕采纳,获得10
4秒前
4秒前
HUHU发布了新的文献求助10
7秒前
科研通AI6应助四体不勤采纳,获得10
7秒前
科研王完成签到 ,获得积分10
8秒前
柯柯完成签到,获得积分10
8秒前
Ava应助星辰坠于海采纳,获得10
9秒前
9秒前
9秒前
颜三问完成签到,获得积分10
12秒前
俊秀的千万完成签到,获得积分10
12秒前
12秒前
逆袭者完成签到,获得积分10
13秒前
勤恳雅莉应助kkk采纳,获得10
13秒前
热心弱发布了新的文献求助10
14秒前
HUHU完成签到,获得积分10
15秒前
xzy998应助ccyy采纳,获得10
16秒前
16秒前
16秒前
香蕉诗蕊举报大方元风求助涉嫌违规
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
Juid应助科研通管家采纳,获得40
19秒前
李不笑发布了新的文献求助10
19秒前
潇洒的夏烟完成签到,获得积分10
20秒前
spc68应助yyanxuemin919采纳,获得10
21秒前
一er完成签到,获得积分20
22秒前
Ava应助beyonder采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563671
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685433
捐赠科研通 4590501
什么是DOI,文献DOI怎么找? 2518611
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478