Advancing Nitrobenzene Hydrogenation Process Understanding: A Multiscale Modeling Approach using Industrial Pharmaceutical Production Data

工艺工程 计算机科学 灵活性(工程) 过程(计算) 硝基苯 放热反应 活性成分 过程模拟 生产(经济) 化学 工程类 催化作用 操作系统 有机化学 经济 宏观经济学 统计 生物 生物信息学 生物化学 数学
作者
Wout Callewaert,Bernardo V. Pessanha,Jeroen Lauwaert,David Fernandes del Pozo,Ingmar Nopens,Peter Baldwin,Mairtin McNamara,Joris Thybaut
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:63 (32): 14029-14042 被引量:2
标识
DOI:10.1021/acs.iecr.4c00318
摘要

The pharmaceutical industry is under increasing pressure to reduce production costs and operate within agile supply chains by leveraging the capabilities that come with integrated data infrastructures and increasing access to various forms of modeling. In contrast to bulk chemical production, pharmaceutical productions typically operate at significantly lower volumes and allow for narrower variability in critical parameters due to tightly defined operating ranges. This makes the data acquired from the process challenging to analyze with statistical methods, but the application of engineering and scientific relations as multiscale models offers a more effective way of leveraging the historical data that are available. In this work, a multiscale reaction model is developed for an exothermic liquid phase hydrogenation of a nitrobenzene functionality in the synthesis of an active pharmaceutical ingredient (API) by using available production data. The developed model successfully described the interplay between reaction kinetics, gas–liquid mass transfer, and heat removal present in the process data, as evident from the simulated versus observed temperature evolution with batch time, which was used as an indirect measurement of the reaction conversion. Moreover, the model was also able to reproduce the temperature profiles in the case of a 30% scale-up. Simulated concentration profiles indicate that the end of the reaction occurs within a much shorter time frame than that prescribed by the process recipe, suggesting that the batch time can be reduced by more than 50%. The results demonstrate the flexibility and predictive power of this type of modeling approach because this model was developed using passive data collection of standard process parameters rather than through a dedicated Design of Experiments (DoE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
敏子完成签到,获得积分10
刚刚
刚刚
米呀呀呀呀呀呀完成签到,获得积分10
1秒前
七月发布了新的文献求助20
2秒前
小周周完成签到,获得积分10
2秒前
2秒前
科研通AI6应助柒柒采纳,获得50
3秒前
HHHSean发布了新的文献求助10
4秒前
4秒前
song发布了新的文献求助30
5秒前
5秒前
5秒前
露宝发布了新的文献求助10
5秒前
6秒前
小周周发布了新的文献求助10
6秒前
张哈哈完成签到,获得积分10
6秒前
wu关闭了wu文献求助
7秒前
元谷雪发布了新的文献求助10
8秒前
邢彬发布了新的文献求助10
8秒前
8秒前
loosewires给loosewires的求助进行了留言
9秒前
Lin发布了新的文献求助10
9秒前
LIU完成签到,获得积分10
9秒前
如你发布了新的文献求助10
10秒前
HHHSean完成签到,获得积分10
10秒前
hq发布了新的文献求助10
11秒前
11秒前
celi完成签到,获得积分10
11秒前
12秒前
风味烤羊腿完成签到,获得积分0
12秒前
脑洞疼应助木林采纳,获得10
14秒前
QinYuan给QinYuan的求助进行了留言
14秒前
14秒前
15秒前
15秒前
15秒前
生科牲发布了新的文献求助10
15秒前
千万雷同发布了新的文献求助10
15秒前
隐形曼青应助繁荣的又夏采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4402986
求助须知:如何正确求助?哪些是违规求助? 3889680
关于积分的说明 12105949
捐赠科研通 3534341
什么是DOI,文献DOI怎么找? 1939304
邀请新用户注册赠送积分活动 980109
科研通“疑难数据库(出版商)”最低求助积分说明 877107