Method for noninvasive HV/MV switchgear motion analysis using kernel-based algorithm with adaptive feature extraction

开关设备 计算机科学 核(代数) 人工智能 模式识别(心理学) 特征提取 算法 数学 工程类 电气工程 组合数学
作者
Nermina Ahmic-Beganovic,Emir Sokić,Almir Salihbegović,Nedim Osmić
出处
期刊:Maǧallaẗ al-abḥāṯ al-handasiyyaẗ [Elsevier BV]
标识
DOI:10.1016/j.jer.2024.07.001
摘要

When designing, developing, and testing medium-voltage (MV) and high-voltage (HV) switchgears, it is of utmost importance to analyze the movements of their mechanical parts, such as drive trains, contact nozzles, etc. This ensures the safety of switchgear operations and enables detecting and predicting issues that could lead to component damage, power interruptions, reduced efficiency, or even switch failure. Conventional invasive measuring setups, including encoders and laser distance measurements, are often difficult or expensive to use, due to undesirable environmental properties such as high temperatures and/or high voltages, or dimensional constraints often encountered in testing laboratories, compact substations or confined equipment rooms. Video object tracking can be a viable solution in such conditions, allowing for the extraction of the trajectory of mechanical parts of an object under analysis. This paper proposes a novel kernel-based algorithm with adaptive feature extraction for precise colour-based object tracking through video processing. The implemented method is based on the principles of the CamShift algorithm, augmented with fusion with the Kalman filter for continuous estimation and prediction of the object's position based on the available measurements while reducing sensitivity to noise. Beyond precise tracking of the object of interest, the algorithm automatically adapts the mask used in the standard CamShift algorithm by extracting and processing the features of the selected object. This approach exhibits flexibility and robustness in adverse industrial environments. It supports modifications according to user preferences and represents a cost-effective alternative to conventional methods, while performing real-time processing. Experimental results underscore this noninvasive approach is flexible, highly robust, and enables tracking of coloured markers even in challenging conditions like poor lighting, significant blur, and low frame rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
007发布了新的文献求助10
1秒前
inCHident完成签到,获得积分10
2秒前
传奇3应助Wxj246801采纳,获得10
3秒前
在水一方应助hhhh采纳,获得10
4秒前
乐乐应助未闻明日之花采纳,获得10
4秒前
4秒前
月落无痕97完成签到,获得积分10
5秒前
5秒前
5秒前
7秒前
9秒前
10秒前
Tracy发布了新的文献求助10
10秒前
11秒前
12秒前
核桃应助优秀的媚颜采纳,获得10
12秒前
13秒前
迷路藏鸟发布了新的文献求助10
13秒前
13秒前
13秒前
meng发布了新的文献求助10
14秒前
科研通AI2S应助gapper采纳,获得10
14秒前
14秒前
ABBCCC完成签到,获得积分10
15秒前
传奇3应助海鑫王采纳,获得10
18秒前
乔一乔完成签到 ,获得积分10
19秒前
清爽难敌发布了新的文献求助10
20秒前
qq发布了新的文献求助10
20秒前
小怪完成签到,获得积分10
20秒前
20秒前
21秒前
小二郎应助威武的荷花采纳,获得10
21秒前
李健的小迷弟应助三次选采纳,获得10
23秒前
AAA问题批发商完成签到,获得积分10
24秒前
超级幻梅发布了新的文献求助10
24秒前
乐观元风发布了新的文献求助10
26秒前
Felicity完成签到 ,获得积分10
26秒前
cjcai完成签到,获得积分10
26秒前
Leon发布了新的文献求助10
27秒前
RE完成签到 ,获得积分10
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4189393
求助须知:如何正确求助?哪些是违规求助? 3725274
关于积分的说明 11736947
捐赠科研通 3402131
什么是DOI,文献DOI怎么找? 1866809
邀请新用户注册赠送积分活动 923617
科研通“疑难数据库(出版商)”最低求助积分说明 834661