Large language models management of complex medication regimens: a case-based evaluation

计算机科学 重症监护医学 自然语言处理 医学
作者
Steven Xu,Amoreena Most,Aaron Chase,Tanner Hedrick,Brian Murray,Kelli Keats,Susan Smith,Erin Barreto,Tianming Liu,Andrea Sikora
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.07.03.24309889
摘要

Abstract Background Large language models (LLMs) have shown capability in diagnosing complex medical cases and passing medical licensing exams, but to date, only limited evaluations have studied how LLMs interpret, analyze, and optimize complex medication regimens. The purpose of this evaluation was to test four LLMs ability to identify medication errors and appropriate medication interventions on complex patient cases from the intensive care unit (ICU). Methods A series of eight patient cases were developed by critical care pharmacists including history of present illness, laboratory values, vital signs, and medication regimens. Then, four LLMs (ChatGPT (GPT-3.5), ChatGPT (GPT-4), Claude2, and Llama2-7b) were prompted to develop a medication regimen for the patient. LLM generated medication regimens were then reviewed by a panel of seven critical care pharmacists to assess for presence of medication errors and clinical relevance. For each medication regimen recommended by the LLM, clinicians were asked to assess for if they would continue a medication, identify perceived medication errors in the medications recommended, identify the presence of life-threatening medication choices, and rank overall agreement on a 5-point Likert scale. Results The clinician panel rated to continue therapies recommended by the LLMs between 55.8-67.9% of the time. Clinicians perceived between 1.57-4.29 medication errors per recommended regimen, and life-threatening recommendations were present between 15.0-55.3% of the time. Level agreement was between 1.85-2.67 for the four LLMs. Conclusions LLMs demonstrated potential to serve as clinical decision support for the management of complex medication regimens with further domain specific training; however, caution should be used when employing LLMs for medication management given the present capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nPxRRn完成签到,获得积分10
刚刚
2秒前
万能图书馆应助xwl9955采纳,获得10
3秒前
4秒前
QIQI完成签到,获得积分10
6秒前
byby完成签到,获得积分10
6秒前
拉长的问晴完成签到,获得积分10
7秒前
zheng完成签到 ,获得积分10
7秒前
鳗鱼不尤完成签到,获得积分10
9秒前
10秒前
朱杰完成签到 ,获得积分10
10秒前
东郭凝蝶完成签到 ,获得积分10
11秒前
ES完成签到 ,获得积分0
11秒前
339564965完成签到,获得积分10
11秒前
King完成签到,获得积分10
12秒前
零立方完成签到 ,获得积分10
13秒前
ccc完成签到,获得积分10
13秒前
风趣霆完成签到,获得积分10
14秒前
儒雅的千秋完成签到,获得积分10
15秒前
有距离完成签到,获得积分10
16秒前
只想顺利毕业的科研狗完成签到,获得积分10
16秒前
美丽的仙人掌完成签到,获得积分10
16秒前
研友_ZA2B68完成签到,获得积分10
17秒前
Brian完成签到,获得积分10
18秒前
19秒前
ke科研小白完成签到,获得积分10
20秒前
xueshidaheng完成签到,获得积分0
20秒前
桥豆麻袋完成签到,获得积分10
20秒前
gishisei完成签到,获得积分10
21秒前
木康薛完成签到,获得积分10
21秒前
韭菜发布了新的文献求助10
23秒前
文心同学完成签到,获得积分0
23秒前
BK_201完成签到,获得积分10
24秒前
tingalan完成签到,获得积分10
24秒前
Helios完成签到,获得积分10
24秒前
abiorz完成签到,获得积分0
25秒前
窗外是蔚蓝色完成签到,获得积分10
25秒前
风信子完成签到,获得积分10
26秒前
吐司炸弹完成签到,获得积分10
27秒前
nanostu完成签到,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795626
求助须知:如何正确求助?哪些是违规求助? 3340699
关于积分的说明 10301063
捐赠科研通 3057238
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626