Protein Sequence‐Based COVID‐19 Detection: A Comparative Study of Machine Learning Classification Methods

2019年冠状病毒病(COVID-19) 序列(生物学) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 计算机科学 人工智能 蛋白质测序 计算生物学 机器学习 病毒学 肽序列 医学 生物 生物化学 内科学 基因 爆发 传染病(医学专业) 疾病
作者
Siti Aminah,Gianinna Ardaneswari,Mohd Khalid Awang,Muhammad Ariq Yusaputra,Dwivelia Aftika Sari
出处
期刊:Journal of Electrical and Computer Engineering [Hindawi Limited]
卷期号:2024 (1)
标识
DOI:10.1155/2024/8683822
摘要

Coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), continue to pose a significant public health challenge globally, even in 2024. Despite advancements in vaccines and treatments, the accurate classification of coronavirus protein sequences remains crucial for monitoring variants, understanding viral behavior, and developing targeted interventions. In this study, we investigate the efficacy of various classification methods in accurately classifying coronavirus protein sequences. We explore the use of K ‐nearest neighbor (KNN), fuzzy KNN (FKNN), support vector machine (SVM), and SVM with particle swarm optimization (PSO‐SVM) algorithms for classification, complemented by feature selection techniques including principal component analysis (PCA) and random forest‐recursive feature elimination (RF‐RFE). Our dataset comprises 2000 protein sequences, evenly split between SARS‐CoV‐2 and non‐SARS‐CoV‐2 sequences. Through rigorous analysis, we evaluate the performance of each classification model in terms of accuracy, sensitivity, specificity, and receiver operating characteristic area under the curve (ROC‐AUC). Our findings demonstrate consistently high performance across all models, reflecting their efficacy in classifying coronavirus protein sequences. Notably, the PCA + PSO‐SVM model emerges as the top‐performing model, exhibiting the highest classification accuracy, specificity, and ROC‐AUC score, demonstrating its effectiveness in distinguishing between SARS‐CoV‐2 and non‐SARS‐CoV‐2 sequences. Overall, our study highlights the importance of employing advanced classification methods and feature selection techniques in accurately classifying coronavirus protein sequences. The findings provide valuable insights for researchers and practitioners in the field of bioinformatics and contribute to ongoing efforts in understanding and combating the COVID‐19 pandemic and its evolving challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fsy发布了新的文献求助10
刚刚
刚刚
北夏暖完成签到,获得积分10
刚刚
聪明的寄灵完成签到,获得积分10
刚刚
leena发布了新的文献求助10
1秒前
yukk发布了新的文献求助10
1秒前
ccl完成签到,获得积分10
1秒前
Pengcheng完成签到,获得积分10
1秒前
大模型应助独特的代芙采纳,获得10
1秒前
好好学习完成签到,获得积分0
2秒前
纳米果发布了新的文献求助10
2秒前
深情的大碗完成签到,获得积分10
2秒前
3秒前
夏小安完成签到,获得积分10
3秒前
Baneyhua完成签到,获得积分10
3秒前
叶子完成签到 ,获得积分10
3秒前
瓶子君152完成签到,获得积分10
3秒前
任性舞蹈发布了新的文献求助10
3秒前
狂野元枫完成签到 ,获得积分10
3秒前
3秒前
沉静的煎蛋完成签到,获得积分10
5秒前
cdercder应助机智橘子采纳,获得20
5秒前
回来完成签到,获得积分10
5秒前
自信的寒天完成签到,获得积分10
6秒前
7秒前
7秒前
znn完成签到,获得积分10
8秒前
dddd完成签到,获得积分10
8秒前
诚心的哈密瓜完成签到 ,获得积分10
8秒前
Ju完成签到 ,获得积分10
9秒前
罗海艳发布了新的文献求助10
9秒前
香蕉觅云应助酷酷衣采纳,获得10
9秒前
小兔叽完成签到 ,获得积分10
9秒前
Ava应助纳米果采纳,获得10
10秒前
10秒前
led完成签到,获得积分10
10秒前
10秒前
Hello应助西哈哈采纳,获得10
10秒前
聪慧的以彤完成签到,获得积分10
10秒前
摸鱼仙人完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392