A New Framework for Nonlinear Kalman Filters

卡尔曼滤波器 移动视界估计 非线性系统 扩展卡尔曼滤波器 计算机科学 控制理论(社会学) 人工智能 物理 控制(管理) 量子力学
作者
Shida Jiang,Junzhe Shi,Scott Moura
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2407.05717
摘要

The Kalman filter (KF) is a state estimation algorithm that optimally combines system knowledge and measurements to minimize the mean squared error of the estimated states. While KF was initially designed for linear systems, numerous extensions of it, such as extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), etc., have been proposed for nonlinear systems. Although different types of nonlinear KFs have different pros and cons, they all use the same framework of linear KF, which, according to what we found in this paper, tends to give overconfident and less accurate state estimations when the measurement functions are nonlinear. Therefore, in this study, we designed a new framework for nonlinear KFs and showed theoretically and empirically that the new framework estimates the states and covariance matrix more accurately than the old one. The new framework was tested on four different nonlinear KFs and five different tasks, showcasing its ability to reduce the estimation errors by several orders of magnitude in low-measurement-noise conditions, with only about a 10 to 90% increase in computational time. All types of nonlinear KFs can benefit from the new framework, and the benefit will increase as the sensors become more and more accurate in the future. As an example, EKF, the simplest nonlinear KF that was previously believed to work poorly for strongly nonlinear systems, can now provide fast and fairly accurate state estimations with the help of the new framework. The codes are available at https://github.com/Shida-Jiang/A-new-framework-for-nonlinear-Kalman-filters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
giao发布了新的文献求助20
刚刚
chu发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
111发布了新的文献求助10
3秒前
3秒前
4秒前
xol发布了新的文献求助10
5秒前
科研通AI5应助执着乐双采纳,获得10
6秒前
mangata发布了新的文献求助10
6秒前
卉花花完成签到,获得积分10
6秒前
7秒前
chu完成签到,获得积分20
7秒前
7秒前
cc完成签到,获得积分20
7秒前
ding应助哈哈哈采纳,获得10
7秒前
8秒前
完美芹发布了新的文献求助10
8秒前
Duckseid发布了新的文献求助10
8秒前
爱听歌的谷丝完成签到,获得积分10
8秒前
8秒前
Lucas应助lin采纳,获得10
9秒前
9秒前
9秒前
10秒前
ding应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
卉花花发布了新的文献求助10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
从容芮应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791448
求助须知:如何正确求助?哪些是违规求助? 3335883
关于积分的说明 10277790
捐赠科研通 3052576
什么是DOI,文献DOI怎么找? 1675134
邀请新用户注册赠送积分活动 803163
科研通“疑难数据库(出版商)”最低求助积分说明 761111