基因组
染色体
生物
计算生物学
遗传学
植物
基因
作者
Jinhong Tian,Zhuo Chen,Can Jiang,Siguang Li,Xinhua Yun,Chengzhong He,Dawei Wang
标识
DOI:10.1016/j.ijbiomac.2024.134820
摘要
Docynia delavayi is an economically significant fruit species with a high market potential due to the special aroma of its fruit. Here, a 653.34 Mb high-quality genome of D. delavayi was first reported, of which 93.8 % of the sequences (612.98 Mb) could be anchored to 17 chromosomes, containing 48,325 protein-coding genes. Ks analysis proved that two whole genome duplication (WGD) events occurred in D. delavayi, resulting in the expansion of genes associated with terpene biosynthesis, which promoted its fruit-specific aroma production. Combined multi-omics analysis, α-farnesene was detected as the most abundant aroma substance emitted by D. delavayi fruit during storage, meanwhile one α-farnesene synthase gene (AFS) and 15 transcription factors (TFs) were identified as the candidate genes potentially involved in α-farnesene biosynthesis. Further studies for the regulation network of α-farnesene biosynthesis revealed that DdebHLH, DdeERF1 and DdeMYB could activate the transcription of DdeAFS. To our knowledge, it is the first report that MYB TF plays a regulatory role in α-farnesene biosynthesis, which will greatly facilitate future breeding programs for D. delavayi.
科研通智能强力驱动
Strongly Powered by AbleSci AI