亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Building Dual AI Models and Nomograms Using Noninvasive Parameters for Aiding Male Bladder Outlet Obstruction Diagnosis and Minimizing the Need for Invasive Video-Urodynamic Studies: Development and Validation Study

列线图 医学 膀胱出口梗阻 逻辑回归 下尿路症状 队列 泌尿科 内科学 前列腺 癌症
作者
Chung-You Tsai,Jing-Hui Tian,Chien-Cheng Lee,Hann‐Chorng Kuo
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e58599-e58599 被引量:3
标识
DOI:10.2196/58599
摘要

Background Diagnosing underlying causes of nonneurogenic male lower urinary tract symptoms associated with bladder outlet obstruction (BOO) is challenging. Video-urodynamic studies (VUDS) and pressure-flow studies (PFS) are both invasive diagnostic methods for BOO. VUDS can more precisely differentiate etiologies of male BOO, such as benign prostatic obstruction, primary bladder neck obstruction, and dysfunctional voiding, potentially outperforming PFS. Objective These examinations’ invasive nature highlights the need for developing noninvasive predictive models to facilitate BOO diagnosis and reduce the necessity for invasive procedures. Methods We conducted a retrospective study with a cohort of men with medication-refractory, nonneurogenic lower urinary tract symptoms suspected of BOO who underwent VUDS from 2001 to 2022. In total, 2 BOO predictive models were developed—1 based on the International Continence Society’s definition (International Continence Society–defined bladder outlet obstruction; ICS-BOO) and the other on video-urodynamic studies–diagnosed bladder outlet obstruction (VBOO). The patient cohort was randomly split into training and test sets for analysis. A total of 6 machine learning algorithms, including logistic regression, were used for model development. During model development, we first performed development validation using repeated 5-fold cross-validation on the training set and then test validation to assess the model’s performance on an independent test set. Both models were implemented as paper-based nomograms and integrated into a web-based artificial intelligence prediction tool to aid clinical decision-making. Results Among 307 patients, 26.7% (n=82) met the ICS-BOO criteria, while 82.1% (n=252) were diagnosed with VBOO. The ICS-BOO prediction model had a mean area under the receiver operating characteristic curve (AUC) of 0.74 (SD 0.09) and mean accuracy of 0.76 (SD 0.04) in development validation and AUC and accuracy of 0.86 and 0.77, respectively, in test validation. The VBOO prediction model yielded a mean AUC of 0.71 (SD 0.06) and mean accuracy of 0.77 (SD 0.06) internally, with AUC and accuracy of 0.72 and 0.76, respectively, externally. When both models’ predictions are applied to the same patient, their combined insights can significantly enhance clinical decision-making and simplify the diagnostic pathway. By the dual-model prediction approach, if both models positively predict BOO, suggesting all cases actually resulted from medication-refractory primary bladder neck obstruction or benign prostatic obstruction, surgical intervention may be considered. Thus, VUDS might be unnecessary for 100 (32.6%) patients. Conversely, when ICS-BOO predictions are negative but VBOO predictions are positive, indicating varied etiology, VUDS rather than PFS is advised for precise diagnosis and guiding subsequent therapy, accurately identifying 51.1% (47/92) of patients for VUDS. Conclusions The 2 machine learning models predicting ICS-BOO and VBOO, based on 6 noninvasive clinical parameters, demonstrate commendable discrimination performance. Using the dual-model prediction approach, when both models predict positively, VUDS may be avoided, assisting in male BOO diagnosis and reducing the need for such invasive procedures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lbmedicine完成签到 ,获得积分10
5秒前
上善若水完成签到 ,获得积分10
8秒前
科研通AI5应助Lilial采纳,获得10
10秒前
黄陈涛完成签到 ,获得积分10
15秒前
mochi完成签到 ,获得积分10
15秒前
轻松元绿完成签到 ,获得积分10
20秒前
bkagyin应助Lyuiii采纳,获得10
21秒前
22秒前
呼延含双完成签到,获得积分10
24秒前
Akim应助Rainfallen9采纳,获得10
24秒前
Lilial发布了新的文献求助10
28秒前
calm完成签到,获得积分10
29秒前
Walter完成签到 ,获得积分10
37秒前
37秒前
Wish完成签到,获得积分10
40秒前
十you八九发布了新的文献求助10
43秒前
46秒前
甜筒完成签到,获得积分10
47秒前
ceeray23发布了新的文献求助20
50秒前
54秒前
羞涩的傲菡完成签到,获得积分10
55秒前
碳酸芙兰完成签到,获得积分10
58秒前
乐乐应助123采纳,获得10
1分钟前
万事屋完成签到 ,获得积分10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
uu完成签到,获得积分10
1分钟前
1分钟前
lemkier发布了新的文献求助10
1分钟前
Tumumu完成签到,获得积分10
1分钟前
123发布了新的文献求助10
1分钟前
Winnie完成签到,获得积分10
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Jim完成签到,获得积分10
1分钟前
lucky发布了新的文献求助10
1分钟前
dongjunfei完成签到,获得积分20
1分钟前
1分钟前
叫我大王发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4483966
求助须知:如何正确求助?哪些是违规求助? 3939863
关于积分的说明 12220011
捐赠科研通 3595286
什么是DOI,文献DOI怎么找? 1977156
邀请新用户注册赠送积分活动 1014270
科研通“疑难数据库(出版商)”最低求助积分说明 907386