已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Damage identification of a jacket platform based on a hybrid deep learning framework

鉴定(生物学) 计算机科学 任务(项目管理) 高保真 忠诚 有限元法 深度学习 人工智能 结构健康监测 振动 数据挖掘 实时计算 机器学习 工程类 系统工程 结构工程 物理 电气工程 生物 电信 量子力学 植物
作者
Su Xin,Zhang Qi,Yang Li,Yi Huang,Jia Ziguang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241262558
摘要

Given the complex operational environment of offshore platforms, accurate identification of structural damage has become a crucial aspect of structural health monitoring. However, accurately pinpointing the damage locations based on vibration data under load, particularly for intricate platform structures, is a challenging task. Existing damage-identification methods, particularly those rooted in deep learning frameworks, often encounter difficulties when applied to marine platforms. Therefore, this study proposes an innovative approach. The accuracy of damage identification for marine platforms operating under unique service conditions was enhanced by introducing a deconvolutional parallel processing module and an auxiliary loss function processing module into the core ResNet50 network. This enhancement improved the accuracy of the model in detecting damage within complex marine structures. Information processing is enriched by fusing the vibration data acquired from the measurement points across different domains: time, frequency, and recurrence plots. The results of this approach were remarkable. When the algorithm model, validated through model experiments, is extended to a digital twin established based on real marine platforms, simulations and loading under real loads were performed on a refined high-fidelity finite-element model, yielding dynamic response information that closely mirrored real-world conditions. A corresponding damage-recognition database was established to support the digital twin system. For the eight different directions, the model accuracy ranged from a minimum of 87.38% to a maximum of 92.27%. This represents a significant advancement compared to the performance of the original network. Empirical experiments substantiated the efficacy of the improved algorithm, demonstrating an impressive recognition accuracy of 93.75%. This achievement underscores the potential of this method to revolutionize damage identification for marine platforms, particularly under the distinctive conditions that these structures encounter. The integration of specialized modules and enhanced processing methodologies further bolster the accuracy of deep-learning-based damage identification and makes the building of digital twin models of offshore platforms feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助AquaR采纳,获得30
刚刚
方圆学术完成签到,获得积分10
2秒前
3秒前
LaTeXer应助科研通管家采纳,获得30
3秒前
jyy应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
yscr发布了新的文献求助10
4秒前
科目三应助Jio-PPx采纳,获得10
4秒前
夏侯德东完成签到,获得积分10
5秒前
乐弈完成签到,获得积分10
5秒前
5秒前
guo完成签到 ,获得积分10
5秒前
研友_LNoG6n完成签到,获得积分10
5秒前
6秒前
斯文败类应助boboko采纳,获得10
6秒前
7秒前
杜青完成签到,获得积分10
7秒前
尔东发布了新的文献求助10
8秒前
8秒前
9秒前
觉主完成签到,获得积分10
9秒前
9秒前
脑洞疼应助teqfsci采纳,获得10
9秒前
11秒前
自然尔槐发布了新的文献求助10
12秒前
Jio-PPx发布了新的文献求助10
13秒前
Violet发布了新的文献求助10
13秒前
15秒前
倪侃发布了新的文献求助10
15秒前
夜雨完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4832916
求助须知:如何正确求助?哪些是违规求助? 4137443
关于积分的说明 12806626
捐赠科研通 3880642
什么是DOI,文献DOI怎么找? 2134302
邀请新用户注册赠送积分活动 1154392
关于科研通互助平台的介绍 1052919