Investigating the influence of measurement uncertainty on chlorophyll-a predictions as an indicator of harmful algal blooms in machine learning models

水华 环境科学 生态学 叶绿素a 计算机科学 机器学习 生物 浮游植物 植物 营养物
作者
Ibrahim Busari,Debabrata Sahoo,K. P. Sudheer,R. Daren Harmel,Charles V. Privette,Mark A. Schlautman,Carl D. Sawyer
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:82: 102735-102735 被引量:2
标识
DOI:10.1016/j.ecoinf.2024.102735
摘要

Advancements in data availability, including high frequency, near real-time multiparameter sensors, laboratory analysis, and in-situ and remote observations, have driven the development of machine learning (ML) models for applications such as toxic Harmful Algal Bloom (HABs) monitoring. However, the performance of ML predictions is influenced by both model uncertainties due to inherent model structures and errors associated with input dataset measurements. For example, measurement uncertainty arises from sample collection, sensor drift and laboratory analysis and sample handling errors. While impacts of model uncertainty are commonly addressed using probabilistic approaches, the effect of measurement uncertainty is less studied due to the limited availability of detailed measurement information. This study focuses on assessing the impact of measurement uncertainty on the ML prediction of chlorophyll-a concentration as an index of HABs in a mesotrophic lake. Using randomized subsets of input measured datasets that mimic possible chlorophyll-a concentration distributions, the study built 1000 Random Forest (RF) and Support Vector Regression (SVR) models. An independent measured dataset was used to validate the ensemble models, allowing for model performance evaluation and the creation of prediction intervals to measure the propagated uncertainty. Our findings showed that the model predictions have MAE that ranged between 0.16 μg/l and 5.19 μg/l, and RMSE ranging between 0.20 μg/l and 7.39 μg/l. The highest uncertainty coverage of 0.71 was observed in the RF model without chlorophyll-a sensor values as a predictor. The study found that the training dataset sizes due to the high frequency and manually sampled nature influence how much measurement uncertainty is covered. The results of this study demonstrate how well ML models can capture various HABs patterns when given diverse measurement variables. Our findings will give researchers insightful information on how to lessen the impact of measurement uncertainty when using ML models as decision-support tools for HABs management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李发布了新的文献求助10
刚刚
111发布了新的文献求助10
刚刚
刚刚
1秒前
3秒前
yuanzhilong发布了新的文献求助10
3秒前
Explorer发布了新的文献求助2500
3秒前
机智的宝贝完成签到,获得积分10
4秒前
JamesPei应助kk采纳,获得10
5秒前
5秒前
北方发布了新的文献求助10
5秒前
科研通AI5应助粥粥采纳,获得10
6秒前
在水一方应助Jasmine采纳,获得10
6秒前
7秒前
诚心梦之完成签到,获得积分10
8秒前
8秒前
8秒前
德尔塔捱斯完成签到 ,获得积分10
8秒前
jxx发布了新的文献求助10
10秒前
FC发布了新的文献求助10
11秒前
XSY0112发布了新的文献求助10
14秒前
丘比特应助北方采纳,获得10
16秒前
17秒前
Owen应助炙热念双采纳,获得10
17秒前
17秒前
18秒前
19秒前
我是老大应助完美芒果采纳,获得10
20秒前
Yiyyan完成签到,获得积分10
21秒前
阿南发布了新的文献求助10
22秒前
qian发布了新的文献求助10
23秒前
xudongmei发布了新的文献求助10
23秒前
23秒前
24秒前
26秒前
悬铃木完成签到,获得积分10
26秒前
阳先生给阳先生的求助进行了留言
27秒前
幸运星发布了新的文献求助10
29秒前
热爱可抵岁月漫长完成签到,获得积分10
29秒前
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781804
求助须知:如何正确求助?哪些是违规求助? 3327400
关于积分的说明 10230835
捐赠科研通 3042271
什么是DOI,文献DOI怎么找? 1669937
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804