Abnormal recognition-assisted and onset-offset aware network for pathological wearable ECG delineation

计算机科学 可穿戴计算机 偏移量(计算机科学) 人工智能 病态的 语音识别 模式识别(心理学) 医学 嵌入式系统 病理 程序设计语言
作者
Yue Zhang,Jiewei Lai,Chenyu Zhao,Jin‐Liang Wang,Yong Yan,Mingyang Chen,Lei Ji,Jun Guo,Baoshi Han,Yajun Shi,Yundai Chen,Wei Yang,Qianjin Feng
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:157: 102992-102992
标识
DOI:10.1016/j.artmed.2024.102992
摘要

Electrocardiogram (ECG) delineation is essential to the identification of abnormal cardiac status, especially when ECG signals are remotely monitored with wearable devices. The complexity and diversity of cardiac conditions generate numerous pathological ECG patterns, not only requiring the recognition of normal ECG but also addressing an extensive range of abnormal ECG patterns, posing a challenging task. Therefore, we propose an abnormal recognition-assisted network to integrate supplementary information on diverse ECG patterns. Simultaneously, we design an onset-offset aware loss to enhance precise waveform localization. Specifically, we establish a two-branch framework where ECG delineation serves as the target task, producing the final segmentation results. Additionally, the abnormal recognition-assisted network serves as an auxiliary task, extracting multi-label pathological information from ECGs. This joint learning approach establishes crucial correlations between ECG delineation and associated ECG abnormalities. The correlations enable the model to demonstrate sufficient generalization in the presence of diverse abnormal ECG patterns. Besides, onset-offset aware loss focuses intensively on wave onsets and offsets by applying biased weights to various waveform positions. This approach ensures a focus on precise localization, facilitating seamless integration into cross-entropy loss function. A large-scale wearable 12-lead dataset containing 4,913 signals is collected, offering an extensive range of ECG data for model training. Results demonstrate that our method achieves outstanding performance on two test datasets, attaining sensitivity of 94.97% and 94.27% and an error tolerance lower than 20 ms. Furthermore, our method is effective for various aberrant ECG signals, including ST-segment changes, atrial premature beats, and right and left bundle branch blocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
我爱Chem发布了新的文献求助10
3秒前
Crescent完成签到 ,获得积分10
4秒前
得一完成签到,获得积分10
5秒前
氼乚发布了新的文献求助10
5秒前
7秒前
8秒前
领导范儿应助zzzzzzy采纳,获得10
8秒前
冰魂应助荔枝草莓酱采纳,获得10
9秒前
9秒前
9秒前
10秒前
arff发布了新的文献求助10
12秒前
你好发布了新的文献求助10
12秒前
体贴问玉发布了新的文献求助10
12秒前
源于期待发布了新的文献求助10
13秒前
Mhj13810完成签到,获得积分10
14秒前
Bronya完成签到 ,获得积分10
14秒前
15秒前
CodeCraft应助鑫渊采纳,获得10
15秒前
15秒前
源于期待完成签到,获得积分10
18秒前
18秒前
犇骉完成签到,获得积分10
18秒前
Mhj13810发布了新的文献求助10
21秒前
21秒前
Akim应助Ken酱采纳,获得10
21秒前
xiaoxin123发布了新的文献求助10
21秒前
22秒前
Hello应助你好采纳,获得10
22秒前
小豆芽完成签到,获得积分10
22秒前
研友_RLNzvL完成签到,获得积分10
23秒前
25秒前
28秒前
28秒前
root发布了新的文献求助10
31秒前
鑫渊发布了新的文献求助10
32秒前
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800387
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326311
捐赠科研通 3062106
什么是DOI,文献DOI怎么找? 1680836
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572