Knowledge-Augmented Deep Learning for Segmenting and Detecting Cerebral Aneurysms With CT Angiography: A Multicenter Study

医学 数字减影血管造影 动脉瘤 放射科 接收机工作特性 血管造影 脑血管造影 数据集 分割 计算机断层血管造影 核医学 人工智能 内科学 计算机科学
作者
Jianyong Wei,X Z Song,Xiaoer Wei,Zhiwen Yang,Lisong Dai,Mengfei Wang,Zheng Sun,Yidong Jin,Chune Ma,Chunhong Hu,Xueqian Xie,Zhenghan Yang,Yonggao Zhang,Fajin Lv,Jie Lu,Yueqi Zhu,Yuehua Li
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (2) 被引量:3
标识
DOI:10.1148/radiol.233197
摘要

Background Deep learning (DL) could improve the labor-intensive, challenging processes of diagnosing cerebral aneurysms but requires large multicenter data sets. Purpose To construct a DL model using a multicenter data set for accurate cerebral aneurysm segmentation and detection on CT angiography (CTA) images and to compare its performance with radiology reports. Materials and Methods Consecutive head or head and neck CTA images of suspected unruptured cerebral aneurysms were gathered retrospectively from eight hospitals between February 2018 and October 2021 for model development. An external test set with reference standard digital subtraction angiography (DSA) scans was obtained retrospectively from one of the eight hospitals between February 2022 and February 2023. Radiologists (reference standard) assessed aneurysm segmentation, while model performance was evaluated using the Dice similarity coefficient (DSC). The model's aneurysm detection performance was assessed by sensitivity and comparing areas under the receiver operating characteristic curves (AUCs) between the model and radiology reports in the DSA data set with use of the DeLong test. Results Images from 6060 patients (mean age, 56 years ± 12 [SD]; 3375 [55.7%] female) were included for model development (training: 4342; validation: 1086; and internal test set: 632). Another 118 patients (mean age, 59 years ± 14; 79 [66.9%] female) were included in an external test set to evaluate performance based on DSA. The model achieved a DSC of 0.87 for aneurysm segmentation performance in the internal test set. Using DSA, the model achieved 85.7% (108 of 126 aneurysms [95% CI: 78.1, 90.1]) sensitivity in detecting aneurysms on per-vessel analysis, with no evidence of a difference versus radiology reports (AUC, 0.93 [95% CI: 0.90, 0.95] vs 0.91 [95% CI: 0.87, 0.94];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
史萌发布了新的文献求助10
刚刚
5秒前
小马甲应助渊渟采纳,获得10
7秒前
12秒前
杨逸尔完成签到,获得积分10
12秒前
小丸子发布了新的文献求助30
13秒前
惊蛰完成签到 ,获得积分10
13秒前
zhouhuyao发布了新的文献求助10
15秒前
小二郎应助臧晓蕾采纳,获得10
16秒前
17秒前
mingzheng发布了新的文献求助10
17秒前
儒雅八宝粥完成签到 ,获得积分10
17秒前
科研小白完成签到,获得积分10
20秒前
一朵小蘑菇完成签到,获得积分10
20秒前
又村完成签到 ,获得积分10
20秒前
23秒前
23秒前
研友_VZG7GZ应助zhouhuyao采纳,获得10
24秒前
alim发布了新的文献求助10
24秒前
洋子发布了新的文献求助20
25秒前
25秒前
小丸子完成签到,获得积分20
28秒前
zjw发布了新的文献求助10
28秒前
zzy完成签到,获得积分10
29秒前
益笙鸿老板完成签到 ,获得积分10
31秒前
34秒前
35秒前
泛泛之交完成签到,获得积分10
35秒前
满当当完成签到 ,获得积分10
36秒前
余文乐完成签到 ,获得积分10
37秒前
朝菌完成签到,获得积分10
37秒前
39秒前
臧晓蕾发布了新的文献求助10
39秒前
40秒前
渊渟发布了新的文献求助10
43秒前
43秒前
46秒前
小羊同学发布了新的文献求助10
47秒前
顺利毕业关注了科研通微信公众号
50秒前
zhouhuyao完成签到,获得积分10
52秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170941
求助须知:如何正确求助?哪些是违规求助? 3706504
关于积分的说明 11694721
捐赠科研通 3392377
什么是DOI,文献DOI怎么找? 1860673
邀请新用户注册赠送积分活动 920499
科研通“疑难数据库(出版商)”最低求助积分说明 832732