Knowledge-Augmented Deep Learning for Segmenting and Detecting Cerebral Aneurysms With CT Angiography: A Multicenter Study

医学 数字减影血管造影 动脉瘤 放射科 接收机工作特性 血管造影 脑血管造影 数据集 分割 计算机断层血管造影 核医学 人工智能 内科学 计算机科学
作者
Jianyong Wei,X Z Song,Xiaoer Wei,Zhiwen Yang,Lisong Dai,Mengfei Wang,Zheng Sun,Yidong Jin,Chune Ma,Chunhong Hu,Xueqian Xie,Zhenghan Yang,Yonggao Zhang,Fajin Lv,Jie Lu,Yueqi Zhu,Yuehua Li
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (2) 被引量:8
标识
DOI:10.1148/radiol.233197
摘要

Background Deep learning (DL) could improve the labor-intensive, challenging processes of diagnosing cerebral aneurysms but requires large multicenter data sets. Purpose To construct a DL model using a multicenter data set for accurate cerebral aneurysm segmentation and detection on CT angiography (CTA) images and to compare its performance with radiology reports. Materials and Methods Consecutive head or head and neck CTA images of suspected unruptured cerebral aneurysms were gathered retrospectively from eight hospitals between February 2018 and October 2021 for model development. An external test set with reference standard digital subtraction angiography (DSA) scans was obtained retrospectively from one of the eight hospitals between February 2022 and February 2023. Radiologists (reference standard) assessed aneurysm segmentation, while model performance was evaluated using the Dice similarity coefficient (DSC). The model's aneurysm detection performance was assessed by sensitivity and comparing areas under the receiver operating characteristic curves (AUCs) between the model and radiology reports in the DSA data set with use of the DeLong test. Results Images from 6060 patients (mean age, 56 years ± 12 [SD]; 3375 [55.7%] female) were included for model development (training: 4342; validation: 1086; and internal test set: 632). Another 118 patients (mean age, 59 years ± 14; 79 [66.9%] female) were included in an external test set to evaluate performance based on DSA. The model achieved a DSC of 0.87 for aneurysm segmentation performance in the internal test set. Using DSA, the model achieved 85.7% (108 of 126 aneurysms [95% CI: 78.1, 90.1]) sensitivity in detecting aneurysms on per-vessel analysis, with no evidence of a difference versus radiology reports (AUC, 0.93 [95% CI: 0.90, 0.95] vs 0.91 [95% CI: 0.87, 0.94];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助北极星采纳,获得10
刚刚
1秒前
1秒前
伍六七完成签到,获得积分10
1秒前
林一漠发布了新的文献求助10
1秒前
万能图书馆应助ttqql采纳,获得10
1秒前
沐沧澜完成签到 ,获得积分10
1秒前
nine发布了新的文献求助10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
mmyhn应助科研通管家采纳,获得20
2秒前
Ava应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
小蘑菇应助王治豪采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
幸福大白发布了新的文献求助10
3秒前
刘妞妞应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得30
3秒前
Hello应助科研通管家采纳,获得10
3秒前
贰鸟应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助Ran采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4700637
求助须知:如何正确求助?哪些是违规求助? 4068984
关于积分的说明 12580622
捐赠科研通 3768762
什么是DOI,文献DOI怎么找? 2081468
邀请新用户注册赠送积分活动 1109223
科研通“疑难数据库(出版商)”最低求助积分说明 987395