A Deep-Learning Based GNSS Scene Recognition Method for Detailed Urban Static Positioning Task via Low-Cost Receivers

全球导航卫星系统应用 计算机科学 任务(项目管理) 人工智能 计算机视觉 遥感 全球定位系统 电信 地理 系统工程 工程类
作者
Y. Li,Zhuojun Jiang,Chuang Qian,Wenjing Huang,Zeen Yang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (16): 3077-3077
标识
DOI:10.3390/rs16163077
摘要

Global Navigation Satellite Systems (GNSS)-based position service is widely applied in cities, but the precision varies significantly in different obstruction scenes. Scene recognition is critical for developing scene-adaptive GNSS algorithms. However, the complexity of urban environments and the unevenness of received signal especially in low-cost receivers limit the performance of GNSS-based scene recognition models. Therefore, our study aims to construct a scene recognition model suitable for urban static positioning and low-cost GNSS receivers. Firstly, we divide the scenes into five categories according to application requirements, including open area, high urban canyon, unilateral urban canyon, shade of tree and low urban canyon. We then construct feature vectors from original observation data and consider the geometric relationships between satellites and receivers. The different sensitivity to different scenes is discovered through an analysis of the performance of each feature vector in recognition. Therefore, a GNSS positioning scene recognition model based on multi-channel LSTM (MC-LSTM) is proposed. The results of experiments show that an accuracy of 99.14% can be achieved by our model. Meanwhile, only 0.75 s and 1.95 ms are required in model training per epoch and model prediction per data on a CPU, which presents a significant improvement of over 90% compared with existing works. Furthermore, our model can be transferred into different time periods quickly and can maintain robustness in situations where one or two types of observation data are missed. A maximum accuracy of 81.13% can be achieved when two channels are missed, while 96.06% is attainable when one channel is missed. Therefore, our model has the potential for real applications in complex urban environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芬芬发布了新的文献求助10
刚刚
小陀螺完成签到,获得积分10
1秒前
姜起蛟完成签到,获得积分20
1秒前
灰色城市y应助研友_8WO978采纳,获得10
1秒前
土豆你个西红柿完成签到,获得积分10
1秒前
淘气科研完成签到,获得积分10
1秒前
2秒前
八九发布了新的文献求助10
2秒前
mojito发布了新的文献求助10
2秒前
欧阳静芙完成签到,获得积分10
2秒前
2秒前
迷人的小土豆完成签到,获得积分10
3秒前
张土豆完成签到 ,获得积分10
3秒前
潇洒的翠丝完成签到,获得积分10
3秒前
秋天发布了新的文献求助10
3秒前
LL发布了新的文献求助10
3秒前
星星完成签到,获得积分10
3秒前
甜蜜的曼冬完成签到 ,获得积分10
4秒前
奋斗人雄完成签到,获得积分10
4秒前
肉酱完成签到 ,获得积分10
6秒前
Roseret完成签到,获得积分20
6秒前
爱读爱看完成签到,获得积分10
6秒前
6秒前
熄熄完成签到 ,获得积分10
6秒前
Chenzza完成签到,获得积分10
7秒前
STZHEN完成签到,获得积分10
7秒前
myg8627发布了新的文献求助30
7秒前
谷粱诗云完成签到,获得积分10
7秒前
学术型小赵完成签到,获得积分20
8秒前
潇湘夜雨完成签到,获得积分10
8秒前
上官若男应助Liangyu采纳,获得30
8秒前
8秒前
今后应助淘气科研采纳,获得10
9秒前
9秒前
samvega应助姜起蛟采纳,获得20
9秒前
10秒前
10秒前
10秒前
zzzsss完成签到,获得积分10
11秒前
来弄完成签到,获得积分10
12秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788560
求助须知:如何正确求助?哪些是违规求助? 3333813
关于积分的说明 10264224
捐赠科研通 3049806
什么是DOI,文献DOI怎么找? 1673705
邀请新用户注册赠送积分活动 802157
科研通“疑难数据库(出版商)”最低求助积分说明 760535