亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Review of physics-informed machine-learning inversion of geophysical data

反演(地质) 地球物理学 最大值和最小值 人工神经网络 反问题 算法 地质学 波动方程 计算机科学 应用数学 机器学习 人工智能 数学 物理 数学分析 构造盆地 古生物学
作者
Gerard T. Schuster,Yuqing Chen,Shihang Feng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (6): T337-T356 被引量:40
标识
DOI:10.1190/geo2023-0615.1
摘要

ABSTRACT We review five types of physics-informed machine-learning (PIML) algorithms for inversion and modeling of geophysical data. Such algorithms use the combination of a data-driven machine-learning (ML) method and the equations of physics to model or invert geophysical data (or both). By incorporating the constraints of physics, PIML algorithms can effectively reduce the size of the solution space for ML models, enabling them to be trained on smaller data sets. This is especially advantageous in scenarios in which data availability may be limited or expensive to obtain. In this review, we restrict the physics to be that from the governing wave equation, either as a constraint that must be satisfied or by using numerical solutions of the wave equation for modeling and inversion. This approach ensures that the resulting models adhere to physical principles while leveraging the power of ML to analyze and interpret complex geophysical data. There are several potential benefits of PIML compared to standard numerical modeling or inversion of seismic data computed by, for example, finite-difference solutions to the wave equation. Empirical tests suggest that PIML algorithms constrained by the physics of wave propagation can sometimes resist getting stuck in a local minima compared with standard full-waveform inversion (FWI).After the weights of the neural network are found by training, then the forward and inverse operations by PIML can be more than several orders of magnitude more efficient than FWI. However, the computational cost for general training can be enormous.If the ML inversion operator Hw is locally trained on a small portion of the recorded data dobs, then there is sometimes no need for millions of training examples that aim for global generalization of Hw. The benefit is that the locally trained Hw can be used to economically invert the remaining test data dtest for the true velocity m≈Hwdtest, where dtest can comprise more than 90% of the recorded data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiran完成签到 ,获得积分10
3秒前
5秒前
10秒前
闪闪的晓丝完成签到 ,获得积分10
12秒前
WIS发布了新的文献求助10
12秒前
gg完成签到,获得积分10
20秒前
39秒前
40秒前
fhzy发布了新的文献求助10
43秒前
48秒前
49秒前
赤恩发布了新的文献求助10
53秒前
55秒前
半夏完成签到,获得积分10
1分钟前
1分钟前
1分钟前
隐形曼青应助爱吃大米饭采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
xuexi发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
fhzy完成签到,获得积分10
1分钟前
xuexi完成签到,获得积分10
1分钟前
1分钟前
李彤阳发布了新的文献求助10
1分钟前
hyx完成签到 ,获得积分10
1分钟前
李彤阳完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
HANZHANG应助科研通管家采纳,获得20
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
zjjcrystal发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755340
求助须知:如何正确求助?哪些是违规求助? 5493931
关于积分的说明 15381135
捐赠科研通 4893488
什么是DOI,文献DOI怎么找? 2632142
邀请新用户注册赠送积分活动 1579983
关于科研通互助平台的介绍 1535786