已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ligand Field-Engineered Frontier Orbital Alignment in MXenes-Supported Single-Atom Catalysts for Enhanced Propane Dehydrogenation

作者
Aqsa Abid,Xiaoying Sun,LingLing Shang,Bo Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (44): 60712-60720
标识
DOI:10.1021/acsami.5c18062
摘要

Single-atom catalysts (SACs) offer a transformative strategy for propane dehydrogenation (PDH) by maximizing atom efficiency and enabling precise active-site control. Their performance, however, is intrinsically linked to the electronic properties of the support. This study reveals the essential role of the ligand field in determining the stability and activity of SACs supported on V3C2O2 MXene. We demonstrate that the ligand field lifts the degeneracy of metal d-orbitals, and a strong field induces a large splitting energy, which minimizes the HOMO-LUMO gap. This electronic modulation strengthens the SAC binding and enhances catalytic activity, yielding significantly lower C-H activation barriers compared with conventional metal surfaces. The reaction pathway involving the coadsorption of a propyl fragment and a hydrogen atom at the pure metal site (P3) outperforms those on mixed metal-oxygen (P2) or pure oxygen (P1) sites. Catalyst regeneration via hydrogen desorption proceeds most readily through homolytic coupling, is moderately challenging via heterolytic recombination, and is most difficult through dihydrogen formation. Pt-SAC exhibits superior stability and the lowest energy barriers among all systems owing to its pronounced d-orbital splitting and narrow frontier orbital gap. These insights establish V3C2O2-supported SACs as a versatile platform for PDH, in which crystal field-mediated frontier orbital interactions enable the fine-tuned regulation of reactivity from C-H activation to hydrogen desorption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
赘婿应助Venus采纳,获得10
5秒前
可爱的函函应助DamenS采纳,获得10
6秒前
Lucas应助DamenS采纳,获得10
6秒前
CodeCraft应助DamenS采纳,获得10
7秒前
顾矜应助DamenS采纳,获得10
7秒前
烟花应助DamenS采纳,获得10
7秒前
Hello应助DamenS采纳,获得10
7秒前
Jasper应助DamenS采纳,获得10
7秒前
李健应助DamenS采纳,获得10
7秒前
orixero应助DamenS采纳,获得10
7秒前
善学以致用应助DamenS采纳,获得10
7秒前
科研通AI6应助司马逍遥采纳,获得10
10秒前
RLwan发布了新的文献求助10
10秒前
全球完成签到,获得积分10
10秒前
dddyrrrrr发布了新的文献求助10
10秒前
believe发布了新的文献求助10
10秒前
11秒前
11秒前
深情安青应助轴承采纳,获得30
12秒前
YU发布了新的文献求助20
13秒前
14秒前
佩吉完成签到 ,获得积分10
15秒前
keyantong完成签到,获得积分10
15秒前
浮游应助花椒泡茶采纳,获得10
16秒前
爆米花应助Gabriel采纳,获得10
16秒前
蟹老板发布了新的文献求助10
18秒前
Lucas应助CHEN采纳,获得10
18秒前
打打应助RLwan采纳,获得10
19秒前
冷艳迎蕾应助望云舒采纳,获得50
19秒前
zhouleiwang完成签到,获得积分10
20秒前
茉莉公主完成签到,获得积分20
21秒前
天真稀完成签到,获得积分10
21秒前
22秒前
23秒前
周小荣发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243431
求助须知:如何正确求助?哪些是违规求助? 4409785
关于积分的说明 13726299
捐赠科研通 4279240
什么是DOI,文献DOI怎么找? 2348020
邀请新用户注册赠送积分活动 1345332
关于科研通互助平台的介绍 1303470