Development of a large language model–based knowledge graph for chemotherapy-induced nausea and vomiting in breast cancer and its implications for nursing

作者
Yü Liu,Jingjing Chen,Xianhui Lin,Jihong Song,Shaohua Chen
出处
期刊:International Journal of Nursing Sciences [Elsevier]
卷期号:12 (6): 524-531
标识
DOI:10.1016/j.ijnss.2025.10.010
摘要

Objectives: Chemotherapy-induced nausea and vomiting (CINV) is a common adverse effect among breast cancer patients, significantly affecting quality of life. Existing evidence on the prevention, assessment, and management of this condition is fragmented and inconsistent. This study constructed a CINV knowledge graph using a large language model (LLM) to integrate nursing and medical evidence, thereby supporting systematic clinical decision-making. Methods: A top-down approach was adopted. 1) Knowledge base preparation: Nine databases and eight guideline repositories were searched up to October 2024 to include guidelines, evidence summaries, expert consensuses, and systematic reviews screened by two researchers. 2) Schema design: Referring to the Unified Medical Language System, Systematized Nomenclature of Medicine - Clinical Terms, and the Nursing Intervention Classification, entity and relation types were defined to build the ontology schema. 3) LLM-based extraction and integration: Using the Qwen model under the CRISPE framework, named entity recognition, relation extraction, disambiguation, and fusion were conducted to generate triples and visualize them in Neo4j. Four expert rounds ensured semantic and logical consistency. Model performance was evaluated using precision, recall, F1-score, and 95 % confidence interval (95 %CI) in Python 3.11. Result: A total of 47 studies were included (18 guidelines, two expert consensuses, two evidence summaries, and 25 systematic reviews). The Qwen model extracted 273 entities and 289 relations; after expert validation, 238 entities and 242 relations were retained, forming 244 triples. The ontology comprised nine entity types and eight relation types. The F1-scores for named entity recognition and relation extraction were 82.97 (95 %CI: 0.820, 0.839) and 85.54 (95 %CI: 0.844, 0.867), respectively. The average node degree was 2.03, with no isolated nodes. Conclusion: The LLM-based CINV knowledge graph achieved structured integration of nursing and medical evidence, offering a novel, data-driven tool to support clinical nursing decision-making and advance intelligent healthcare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蓝橙完成签到,获得积分10
1秒前
积极的灵雁完成签到,获得积分10
1秒前
合适凡发布了新的文献求助10
1秒前
傲娇丹翠完成签到,获得积分10
2秒前
Jerry发布了新的文献求助10
2秒前
玛卡巴卡发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
wu无发布了新的文献求助10
3秒前
4秒前
我要发sci发布了新的文献求助10
4秒前
4秒前
5秒前
充电宝应助Wangyn采纳,获得10
5秒前
共享精神应助清脆帽子采纳,获得10
5秒前
宇文书翠完成签到,获得积分10
6秒前
han完成签到,获得积分10
6秒前
烟花应助唯有采纳,获得10
6秒前
6秒前
武狼帝发布了新的文献求助10
7秒前
周宇飞发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
美琦完成签到,获得积分10
10秒前
SciGPT应助徐啊徐采纳,获得20
10秒前
香蕉觅云应助任性的咖啡采纳,获得10
10秒前
TCcc发布了新的文献求助10
10秒前
复杂发布了新的文献求助10
11秒前
周宇飞完成签到,获得积分10
11秒前
12秒前
jiangxiangwen发布了新的文献求助10
14秒前
所所应助司徒访梦采纳,获得10
14秒前
ding应助Jerry采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5403730
求助须知:如何正确求助?哪些是违规求助? 4522356
关于积分的说明 14088619
捐赠科研通 4436155
什么是DOI,文献DOI怎么找? 2434938
邀请新用户注册赠送积分活动 1427179
关于科研通互助平台的介绍 1405746