已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrated multi-omics and causal inference framework with experimental validation reveals key drivers of air pollution–induced acute kidney injury

作者
Jiachen Liu,Dianjie Zeng,Liangmin Fu,Zhichao Huang,Yinhuai Wang,Fei Deng,Zebin Deng
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000003742
摘要

Background: Air pollution has emerged as a significant risk factor for acute kidney injury (AKI), yet the molecular mechanisms underlying this association remain poorly defined. This study aimed to elucidate the nephrotoxic effects of representative air pollutants and identify molecular targets involved in pollutant-induced AKI. Methods: We developed a multi-layered computational and experimental framework integrating omics-based target prediction, network toxicology, machine learning, Mendelian randomization (MR), single-cell profiling, molecular docking with dynamic simulations, and analysis of pollutant-exposed model. Nine representative air pollutants were selected based on environmental relevance and suspected nephrotoxicity. A diagnostic gene signature was constructed using multiple machine learning algorithms, and key targets were evaluated through transcriptome-wide MR. Pollutant-protein interactions were assessed using molecular docking and dynamics simulations. Single-cell data and in vivo transcriptomes from pollutant-exposed models were used to construct a pollutant-target-celltype network. Finally, experimental validation was performed using in vitro exposure of mouse proximal tubular cells. Results: Nephrotoxicity predictions revealed substantial heterogeneity among pollutants, with carbon monoxide, benzene, and ozone exhibiting the highest toxic potential. A total of 49 overlapping genes were identified and found to be enriched in pathways related to inflammation and oxidative stress. A 38-gene diagnostic model demonstrated strong predictive performance across datasets, highlighting a set of core targets potentially involved in both the pathogenesis and prognosis of air pollution–induced AKI. Transcriptome-wide MR analysis further prioritized five genes— NPPA, TGIF1, IL18, CRLS1, and KLF2, —with significant causal associations with AKI. Single-cell transcriptomic profiling revealed that proximal tubular, immune, and endothelial cells are particularly susceptible to pollutant-induced injury. Molecular docking and dynamic simulations identified high-affinity pollutant–protein interactions. In vitro experiments showed that exposure of mouse proximal tubular cells to PM 2.5 and benzene reduced cell viability, induced apoptosis, and significantly dysregulated key genes, providing experimental support for computational predictions. Conclusion: This study provides novel mechanistic insights into air pollution–induced AKI by identifying key genes, pathways, and susceptible renal cell types. The integrative framework combining multi-omics, causal inference, and experimental validation establishes a robust foundation for future translational research and therapeutic development targeting environmentally driven kidney injury.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llwxx完成签到,获得积分10
1秒前
852应助hanhan采纳,获得10
5秒前
7秒前
妥妥酱完成签到,获得积分10
7秒前
田様应助andrele采纳,获得20
8秒前
天天快乐应助斯文明杰采纳,获得10
9秒前
Momomo应助王钢铁采纳,获得10
11秒前
顺利萃发布了新的文献求助10
11秒前
12秒前
hx完成签到 ,获得积分10
13秒前
SciGPT应助忐忑的代桃采纳,获得10
13秒前
18秒前
wanci应助顺利萃采纳,获得10
18秒前
重要的如天完成签到,获得积分20
20秒前
Momomo应助12采纳,获得10
21秒前
22秒前
Yuyu发布了新的文献求助10
22秒前
22秒前
23秒前
25秒前
25秒前
Su完成签到 ,获得积分20
25秒前
领导范儿应助华衡采纳,获得10
26秒前
隐形曼青应助zhj采纳,获得10
27秒前
sam42发布了新的文献求助10
28秒前
gqq完成签到,获得积分10
28秒前
Nnn完成签到 ,获得积分10
29秒前
清爽代芹发布了新的文献求助10
30秒前
31秒前
时尚天玉发布了新的文献求助50
31秒前
JamesPei应助善良的亦云采纳,获得10
34秒前
熬夜波比应助Su采纳,获得10
36秒前
斯文明杰发布了新的文献求助10
36秒前
不安太阳完成签到,获得积分10
39秒前
日辰彗心完成签到 ,获得积分10
41秒前
46秒前
Mystic完成签到 ,获得积分20
49秒前
唐不吃糖完成签到,获得积分10
49秒前
ybbb完成签到 ,获得积分10
49秒前
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5676112
求助须知:如何正确求助?哪些是违规求助? 4952240
关于积分的说明 15156394
捐赠科研通 4835507
什么是DOI,文献DOI怎么找? 2590090
邀请新用户注册赠送积分活动 1543857
关于科研通互助平台的介绍 1501497