已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Remaining Useful Life Prediction Method of Rolling Bearings Based on Deep Reinforcement Learning

预言 计算机科学 强化学习 人工智能 均方误差 自编码 可靠性(半导体) 深信不疑网络 特征提取 深度学习 模式识别(心理学) 机器学习 数据挖掘 统计 功率(物理) 数学 物理 量子力学
作者
Zheng Guokang,Yasong Li,Zheng Zhou,Ruqiang Yan
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 22938-22949 被引量:11
标识
DOI:10.1109/jiot.2024.3363610
摘要

Remaining useful life (RUL) prediction technology is a crucial task in prognostics and health management (PHM) systems, as it contributes to the enhancement of the reliability of equipment operation. With the development of Industrial Internet of Things (IIoT) technologies, it becomes possible to efficiently coordinate data collection for mechanical equipment, enabling real-time monitoring of device status and performance. This could provide more accurate estimations of the RUL. While current RUL prediction techniques predominantly rely on deep learning (DL), these approaches often neglect the temporal correlation within training samples, resulting in unstable prediction outcomes. To address this issue, a novel RUL prediction method is introduced, leveraging deep reinforcement learning (DRL). This method combines the effective feature extraction ability of DL with the preservation of temporal correlation between samples through reinforcement learning. Firstly, an autoencoder (AE) is employed to extract key features that are most relevant to degenerative process from the original signals collected from mechanical equipment. Secondly, state variables in reinforcement learning are constructed using the extracted features and the predicted RUL value of the sample at the previous time step. Finally, a deep reinforcement learning model based on the Twin Delayed Deep Deterministic Policy Gradient algorithm (TD3) is trained after setting an appropriate action space and reward function. Validation using XJTU-SY bearing dataset demonstrates that the DRL method yields lesser Root Mean Square Error (RMSE) and more stable prediction results compared to alternative methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助友好的飞薇采纳,获得10
1秒前
chenxixixi发布了新的文献求助10
4秒前
Andrew应助超级灵竹采纳,获得50
9秒前
Junkang发布了新的文献求助10
9秒前
JY完成签到 ,获得积分10
9秒前
10秒前
大模型应助Melody采纳,获得10
10秒前
顾矜应助chenxixixi采纳,获得10
11秒前
fafamimireredo完成签到,获得积分10
12秒前
12秒前
22222发布了新的文献求助10
13秒前
15秒前
zzb发布了新的文献求助10
16秒前
wise111发布了新的文献求助10
16秒前
17秒前
unless发布了新的文献求助10
20秒前
20秒前
JamesPei应助lcefmeqr采纳,获得10
22秒前
24秒前
爆米花应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
哈基米德应助科研通管家采纳,获得20
24秒前
yx_cheng应助科研通管家采纳,获得20
24秒前
钢铁科研应助科研通管家采纳,获得10
24秒前
哈基米德应助科研通管家采纳,获得20
24秒前
CAOHOU应助科研通管家采纳,获得10
24秒前
24秒前
Owen应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
24秒前
yydragen应助科研通管家采纳,获得30
24秒前
chengke发布了新的文献求助10
25秒前
陈陈陈完成签到,获得积分10
25秒前
26秒前
bblv完成签到 ,获得积分0
30秒前
30秒前
善学以致用应助七七采纳,获得30
31秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Psychology Applied to Teaching 14th Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4085232
求助须知:如何正确求助?哪些是违规求助? 3624310
关于积分的说明 11496455
捐赠科研通 3338519
什么是DOI,文献DOI怎么找? 1835252
邀请新用户注册赠送积分活动 903769
科研通“疑难数据库(出版商)”最低求助积分说明 821956