Multi-instance learning based lung nodule system for assessment of CT quality after small-field-of-view reconstruction

结核(地质) 医学 放射科 图像质量 核医学 断层摄影术 计算机断层摄影术 特征(语言学) 人工智能 计算机科学 图像(数学) 生物 内科学 哲学 古生物学 语言学
作者
Yanqing Ma,Hanbo Cao,Jie Li,Lin Mu,Xiangyang Gong,Yi Lin
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-53797-4
摘要

Abstract Small-field-of-view reconstruction CT images (sFOV-CT) increase the pixel density across airway structures and reduce partial volume effects. Multi-instance learning (MIL) is proposed as a weakly supervised machine learning method, which can automatically assess the image quality. The aim of this study was to evaluate the disparities between conventional CT (c-CT) and sFOV-CT images using a lung nodule system based on MIL and assessments from radiologists. 112 patients who underwent chest CT were retrospectively enrolled in this study between July 2021 to March 2022. After undergoing c-CT examinations, sFOV-CT images with small-field-of-view were reconstructed. Two radiologists analyzed all c-CT and sFOV-CT images, including features such as location, nodule type, size, CT values, and shape signs. Then, an MIL-based lung nodule system objectively analyzed the c-CT (c-MIL) and sFOV-CT (sFOV-MIL) to explore their differences. The signal-to-noise ratio of lungs (SNR-lung) and contrast-to-noise ratio of nodules (CNR-nodule) were calculated to evaluate the quality of CT images from another perspective. The subjective evaluation by radiologists showed that feature of minimal CT value ( p = 0.019) had statistical significance between c-CT and sFOV-CT. However, most features (all with p < 0.05), except for nodule type, location, volume, mean CT value, and vacuole sign ( p = 0.056–1.000), had statistical differences between c-MIL and sFOV-MIL by MIL system. The SNR-lung between c-CT and sFOV-CT had no statistical significance, while the CNR-nodule showed statistical difference ( p = 0.007), and the CNR of sFOV-CT was higher than that of c-CT. In detecting the difference between c-CT and sFOV-CT, features extracted by the MIL system had more statistical differences than those evaluated by radiologists. The image quality of those two CT images was different, and the CNR-nodule of sFOV-CT was higher than that of c-CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谭玲慧发布了新的文献求助10
1秒前
1秒前
科研通AI5应助机智幻香采纳,获得10
2秒前
科研通AI6应助chentian采纳,获得10
3秒前
星辰大海应助Hollow采纳,获得10
3秒前
weddcf发布了新的文献求助10
3秒前
在水一方应助平常听枫采纳,获得10
4秒前
4秒前
4秒前
柯善鹏发布了新的文献求助10
4秒前
Ava应助优秀采纳,获得10
5秒前
英勇的书包完成签到 ,获得积分20
5秒前
8秒前
谁会发布了新的文献求助10
8秒前
9秒前
Criminology34应助wuludie采纳,获得10
9秒前
10秒前
情怀应助科研通管家采纳,获得10
11秒前
哈哈哈哈发布了新的文献求助10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
成懂事长发布了新的文献求助10
11秒前
11秒前
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
oMayii完成签到 ,获得积分10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
12秒前
无花果应助科研通管家采纳,获得10
12秒前
LaTeXer应助科研通管家采纳,获得200
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
大个应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934322
求助须知:如何正确求助?哪些是违规求助? 4202226
关于积分的说明 13056506
捐赠科研通 3976520
什么是DOI,文献DOI怎么找? 2179026
邀请新用户注册赠送积分活动 1195304
关于科研通互助平台的介绍 1106681