Debiased Contrastive Learning for Time-Series Representation Learning and Fault Detection

计算机科学 故障检测与隔离 人工智能 代表(政治) 特征学习 系列(地层学) 时间序列 断层(地质) 机器学习 模式识别(心理学) 地质学 古生物学 地震学 政治 政治学 法学 执行机构
作者
Kexin Zhang,Rongyao Cai,Chunlin Zhou,Yong Liu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (5): 7641-7653 被引量:1
标识
DOI:10.1109/tii.2024.3359409
摘要

Building reliable fault detection systems through deep neural networks is an appealing topic in industrial scenarios. In these contexts, the representations extracted by neural networks on available labeled time-series data can reflect system states. However, this endeavor remains challenging due to the necessity of labeled data. Self-supervised contrastive learning (SSCL) is one of the effective approaches to deal with this challenge, but existing SSCL-based models suffer from sampling bias and representation bias problems. This article introduces a debiased contrastive learning framework for time-series data and applies it to industrial fault detection tasks. This framework first develops the multigranularity augmented view generation method to generate augmented views at different granularities. It then introduces the momentum clustering contrastive learning strategy and the expert knowledge guidance mechanism to mitigate sampling bias and representation bias, respectively. Finally, the experiments on a public bearing fault detection dataset and a widely used valve stiction detection dataset show the effectiveness of the proposed feature learning framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Serein发布了新的文献求助10
刚刚
852应助甘乐采纳,获得10
1秒前
打打应助lk采纳,获得10
1秒前
施展发布了新的文献求助30
1秒前
CipherSage应助xjp采纳,获得10
1秒前
欣慰听南发布了新的文献求助10
2秒前
GUANG发布了新的文献求助10
2秒前
直率的板凳完成签到,获得积分10
2秒前
研友_VZG7GZ应助乐乱采纳,获得10
2秒前
乐乐应助nong12123采纳,获得10
3秒前
CodeCraft应助阿财采纳,获得10
3秒前
雪子发布了新的文献求助10
3秒前
慕青应助半夏生姜采纳,获得10
3秒前
谨慎乌完成签到,获得积分10
4秒前
泽丶完成签到,获得积分10
4秒前
Jaaay发布了新的文献求助10
5秒前
5秒前
如履薄冰发布了新的文献求助10
5秒前
卡卡西应助我要找到你采纳,获得50
5秒前
yy完成签到,获得积分20
5秒前
6秒前
6秒前
7秒前
7秒前
JamesPei应助Anderson123采纳,获得10
7秒前
NexusExplorer应助Anderson123采纳,获得10
7秒前
JamesPei应助Anderson123采纳,获得10
7秒前
Ava应助Anderson123采纳,获得10
7秒前
酷波er应助Anderson123采纳,获得10
7秒前
乐乐应助Anderson123采纳,获得10
8秒前
上官若男应助Anderson123采纳,获得10
8秒前
李健应助Anderson123采纳,获得10
8秒前
CipherSage应助Anderson123采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得30
8秒前
冰魂应助科研通管家采纳,获得20
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809574
求助须知:如何正确求助?哪些是违规求助? 3354064
关于积分的说明 10368731
捐赠科研通 3070352
什么是DOI,文献DOI怎么找? 1686212
邀请新用户注册赠送积分活动 810861
科研通“疑难数据库(出版商)”最低求助积分说明 766396