Intelligently Quantifying the Entire Irregular Dental Structure

分割 组内相关 人工智能 交叉口(航空) 散点图 均方误差 加权 计算机科学 模式识别(心理学) 统计 数学 机器学习 再现性 医学 地图学 放射科 地理
作者
Han Liu,Jinghao Duan,Ping Zeng,Miaojing Shi,Junwen Zeng,Stephanie Chen,Zhenyu Gong,Zetao Chen,Jing Qin,Zetao Chen
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:103 (4): 378-387 被引量:2
标识
DOI:10.1177/00220345241226871
摘要

Quantitative analysis of irregular anatomical structures is crucial in oral medicine, but clinicians often typically measure only several representative indicators within the structure as references. Deep learning semantic segmentation offers the potential for entire quantitative analysis. However, challenges persist, including segmentation difficulties due to unclear boundaries and acquiring measurement landmarks for clinical needs in entire quantitative analysis. Taking the palatal alveolar bone as an example, we proposed an artificial intelligence measurement tool for the entire quantitative analysis of irregular dental structures. To expand the applicability, we have included lightweight networks with fewer parameters and lower computational demands. Our approach finally used the lightweight model LU-Net, addressing segmentation challenges caused by unclear boundaries through a compensation module. Additional enamel segmentation was conducted to establish a measurement coordinate system. Ultimately, we presented the entire quantitative information within the structure in a manner that meets clinical needs. The tool achieved excellent segmentation results, manifested by high Dice coefficients (0.934 and 0.949), intersection over union (0.888 and 0.907), and area under the curve (0.943 and 0.949) for palatal alveolar bone and enamel in the test set. In subsequent measurements, the tool visualizes the quantitative information within the target structure by scatter plots. When comparing the measurements against representative indicators, the tool's measurement results show no statistically significant difference from the ground truth, with small mean absolute error, root mean squared error, and errors interval. Bland-Altman plots and intraclass correlation coefficients indicate the satisfactory agreement compared with manual measurements. We proposed a novel intelligent approach to address the entire quantitative analysis of irregular image structures in the clinical setting. This contributes to enabling clinicians to swiftly and comprehensively grasp structural features, facilitating the design of more personalized treatment plans for different patients, enhancing clinical efficiency and treatment success rates in turn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fffff发布了新的文献求助10
1秒前
大模型应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Blue应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得30
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
Blue应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助100
7秒前
XIaoLuzi发布了新的文献求助10
7秒前
沙脑完成签到 ,获得积分10
7秒前
李二三完成签到,获得积分10
8秒前
万能图书馆应助恋雅颖月采纳,获得10
8秒前
脑洞疼应助Yy杨优秀采纳,获得10
9秒前
10秒前
自由的便当完成签到,获得积分10
11秒前
宇宇发布了新的文献求助20
11秒前
13秒前
田様应助沉默是金采纳,获得10
13秒前
尊敬尔容发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
Yy杨优秀发布了新的文献求助10
17秒前
布丁发布了新的文献求助10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260103
求助须知:如何正确求助?哪些是违规求助? 3792910
关于积分的说明 11896388
捐赠科研通 3440611
什么是DOI,文献DOI怎么找? 1888248
邀请新用户注册赠送积分活动 938973
科研通“疑难数据库(出版商)”最低求助积分说明 844349