Intelligently Quantifying the Entire Irregular Dental Structure

分割 组内相关 人工智能 交叉口(航空) 散点图 均方误差 加权 计算机科学 模式识别(心理学) 统计 数学 机器学习 再现性 医学 地图学 放射科 地理
作者
Han Liu,Jinghao Duan,Ping Zeng,Miaojing Shi,Junwen Zeng,Stephanie Chen,Zhenyu Gong,Zetao Chen,Jing Qin,Zetao Chen
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:103 (4): 378-387 被引量:2
标识
DOI:10.1177/00220345241226871
摘要

Quantitative analysis of irregular anatomical structures is crucial in oral medicine, but clinicians often typically measure only several representative indicators within the structure as references. Deep learning semantic segmentation offers the potential for entire quantitative analysis. However, challenges persist, including segmentation difficulties due to unclear boundaries and acquiring measurement landmarks for clinical needs in entire quantitative analysis. Taking the palatal alveolar bone as an example, we proposed an artificial intelligence measurement tool for the entire quantitative analysis of irregular dental structures. To expand the applicability, we have included lightweight networks with fewer parameters and lower computational demands. Our approach finally used the lightweight model LU-Net, addressing segmentation challenges caused by unclear boundaries through a compensation module. Additional enamel segmentation was conducted to establish a measurement coordinate system. Ultimately, we presented the entire quantitative information within the structure in a manner that meets clinical needs. The tool achieved excellent segmentation results, manifested by high Dice coefficients (0.934 and 0.949), intersection over union (0.888 and 0.907), and area under the curve (0.943 and 0.949) for palatal alveolar bone and enamel in the test set. In subsequent measurements, the tool visualizes the quantitative information within the target structure by scatter plots. When comparing the measurements against representative indicators, the tool's measurement results show no statistically significant difference from the ground truth, with small mean absolute error, root mean squared error, and errors interval. Bland-Altman plots and intraclass correlation coefficients indicate the satisfactory agreement compared with manual measurements. We proposed a novel intelligent approach to address the entire quantitative analysis of irregular image structures in the clinical setting. This contributes to enabling clinicians to swiftly and comprehensively grasp structural features, facilitating the design of more personalized treatment plans for different patients, enhancing clinical efficiency and treatment success rates in turn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maodianandme完成签到,获得积分10
刚刚
黎幻枫发布了新的文献求助10
2秒前
dennisysz发布了新的文献求助10
2秒前
我是老大应助枯草采纳,获得10
2秒前
正直完成签到 ,获得积分10
2秒前
4秒前
11应助zxj采纳,获得10
6秒前
英俊的铭应助小逗比采纳,获得10
6秒前
星夜发布了新的文献求助10
7秒前
10秒前
科研通AI5应助LHL采纳,获得10
11秒前
枯草发布了新的文献求助10
14秒前
是否发布了新的文献求助10
15秒前
cdercder应助小绵羊采纳,获得10
15秒前
cdercder应助小绵羊采纳,获得10
16秒前
17秒前
ricetao完成签到,获得积分10
17秒前
maodianandme发布了新的文献求助10
17秒前
Akim应助枯草采纳,获得10
19秒前
小逗比发布了新的文献求助10
21秒前
勤劳的颤完成签到 ,获得积分10
21秒前
脑洞疼应助3469907229采纳,获得10
22秒前
科研通AI5应助hansJAMA采纳,获得10
22秒前
23秒前
26秒前
LHL发布了新的文献求助10
28秒前
ym完成签到,获得积分10
28秒前
枯草完成签到,获得积分10
29秒前
星辰大海应助星夜采纳,获得10
31秒前
TiamQHF发布了新的文献求助10
31秒前
科研小狗完成签到 ,获得积分10
32秒前
33秒前
CodeCraft应助是否采纳,获得10
35秒前
凶狠的冷松完成签到 ,获得积分10
35秒前
wangchangwu关注了科研通微信公众号
35秒前
暴躁的香氛完成签到,获得积分10
35秒前
39秒前
40秒前
所所应助cxwcn采纳,获得10
44秒前
TiamQHF完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211743
捐赠科研通 3038195
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133