亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving forest above-ground biomass estimation using genetic-based feature selection from Sentinel-1 and Sentinel-2 data (case study of the Noor forest area in Iran)

随机森林 环境科学 生物量(生态学) 特征选择 遥感 合成孔径雷达 植被(病理学) 选择(遗传算法) 计算机科学 地质学 生态学 机器学习 生物 医学 病理
作者
Armin Moghimi,Ava Tavakoli Darestani,Nikrouz Mostofi,Mehdi Fathi,Meisam Amani
出处
期刊:kuwait journal of science [Elsevier BV]
卷期号:51 (2): 100159-100159 被引量:1
标识
DOI:10.1016/j.kjs.2023.11.008
摘要

Biomass holds great importance in the environment, as it not only allows us to measure the carbon stored in forests but also facilitates the assessment of biodiversity and the evaluation of ecological integrity within these crucial ecosystems. In this study, we employed a Genetic Algorithm (GA) to estimate forest Above-Ground Biomass (AGB) by selecting the most applicable features from both Sentinel-2 optical and Sentinel-1 Synthetic Aperture Radar (SAR) images in the Noor forest. The study area was divided into four distinct regions (north, near north, middle, and south), and each region was documented with 100 sample plots through fieldwork to enable comprehensive analysis. In our workflow, Sentinel-2-derived features (i.e., spectral bands, vegetation indices (VIs), soil indices (SIs), and water indices (WIs), along with Sentinel-1 SAR features were initially extracted. Subsequently, GA was employed to select the most optimal features among them within both Random Forest (RF) and Multiple Linear Regression (MLR) models, leading to enhanced accuracy in the forest AGB estimation process. The experimental results demonstrated that the RF model outperformed the MLR model in estimating forest AGB. Furthermore, incorporating GA-based feature selection substantially improved the accuracy of both models, resulting in more dependable AGB estimations. The selected features from the combined Sentinel-1 and Sentinel-2 data also provided the best AGB estimation, surpassing the individual use of each dataset. The selected features from Sentinel-2 particularly played a more substantial role in achieving this overall enhanced performance in AGB estimation. The AGB estimates based on GA-RF were more accurate in all cases, with an average coefficient of determination (R2) of 0.5 and average RMSE of 13.17 Mg ha−1, while the MLR-based estimates were less accurate, with an average R2 value lower than 0.3 and average RMSE higher than 16 Mg ha−1. Furthermore, the GA-RF model selected a wider variety of features including spectral bands, indices, and SAR features compared to GA-MLR, resulting in accurate AGB estimation in the Noor forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinzhen发布了新的文献求助10
刚刚
婷妞儿完成签到,获得积分10
4秒前
simon完成签到 ,获得积分10
7秒前
小二郎应助婷妞儿采纳,获得10
7秒前
吹风关注了科研通微信公众号
12秒前
14秒前
lllkkk发布了新的文献求助10
20秒前
CoCo完成签到 ,获得积分10
24秒前
wstkkkkykk完成签到 ,获得积分10
26秒前
妮妮完成签到,获得积分10
27秒前
缥缈涵菡完成签到,获得积分10
28秒前
33秒前
YumiPg发布了新的文献求助10
38秒前
43秒前
平常的毛豆应助妮妮采纳,获得10
44秒前
Luka发布了新的文献求助10
48秒前
49秒前
Phung发布了新的文献求助10
55秒前
59秒前
59秒前
麻瓜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大气山兰发布了新的文献求助20
1分钟前
asd1576562308完成签到 ,获得积分10
1分钟前
1分钟前
zbx完成签到,获得积分20
1分钟前
Luka完成签到,获得积分10
1分钟前
大气山兰完成签到,获得积分10
1分钟前
zho关闭了zho文献求助
1分钟前
wish完成签到 ,获得积分10
1分钟前
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
共享精神应助Mona采纳,获得10
1分钟前
田様应助Lin2019采纳,获得10
1分钟前
1分钟前
zho发布了新的文献求助10
1分钟前
1分钟前
zbx发布了新的文献求助10
1分钟前
梨儿完成签到,获得积分10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352680
关于积分的说明 10359922
捐赠科研通 3068647
什么是DOI,文献DOI怎么找? 1685184
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022